» Articles » PMID: 35816157

Programmable Multimodal Optothermal Manipulation of Synthetic Particles and Biological Cells

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2022 Jul 11
PMID 35816157
Authors
Affiliations
Soon will be listed here.
Abstract

Optical manipulation of tiny objects has benefited many research areas ranging from physics to biology to micro/nanorobotics. However, limited manipulation modes, intense lasers with complex optics, and applicability to limited materials and geometries of objects restrict the broader uses of conventional optical tweezers. Herein, we develop an optothermal platform that enables the versatile manipulation of synthetic micro/nanoparticles and live cells using an ultralow-power laser beam and a simple optical setup. Five working modes (i.e., printing, tweezing, rotating, rolling, and shooting) have been achieved and can be switched on demand through computer programming. By incorporating a feedback control system into the platform, we realize programmable multimodal control of micro/nanoparticles, enabling autonomous micro/nanorobots in complex environments. Moreover, we demonstrate three-dimensional single-cell surface characterizations through the multimodal optothermal manipulation of live cells. This programmable multimodal optothermal platform will contribute to diverse fundamental studies and applications in cellular biology, nanotechnology, robotics, and photonics.

Citing Articles

Dual-Energy Integration in Photoresponsive Micro/Nanomotors: From Strategic Design to Biomedical Applications.

Chen Y, Goncalves J, Ferrer Campos R, Villa K Small. 2024; 21(6):e2410901.

PMID: 39716841 PMC: 11817945. DOI: 10.1002/smll.202410901.


Persistent and responsive collective motion with adaptive time delay.

Chen Z, Zheng Y Sci Adv. 2024; 10(14):eadk3914.

PMID: 38569026 PMC: 10990279. DOI: 10.1126/sciadv.adk3914.


Synchronous and Fully Steerable Active Particle Systems for Enhanced Mimicking of Collective Motion in Nature.

Chen Z, Ding H, Kollipara P, Li J, Zheng Y Adv Mater. 2023; 36(7):e2304759.

PMID: 37572374 PMC: 10859548. DOI: 10.1002/adma.202304759.


Optical Manipulation Heats up: Present and Future of Optothermal Manipulation.

Kollipara P, Chen Z, Zheng Y ACS Nano. 2023; 17(8):7051-7063.

PMID: 37022087 PMC: 10197158. DOI: 10.1021/acsnano.3c00536.


Multimodal Optothermal Manipulations along Various Surfaces.

Ding H, Kollipara P, Yao K, Chang Y, Dickinson D, Zheng Y ACS Nano. 2023; 17(10):9280-9289.

PMID: 37017427 PMC: 10391738. DOI: 10.1021/acsnano.3c00583.


References
1.
Baffou G, Bon P, Savatier J, Polleux J, Zhu M, Merlin M . Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano. 2012; 6(3):2452-8. DOI: 10.1021/nn2047586. View

2.
Marago O, Jones P, Gucciardi P, Volpe G, Ferrari A . Optical trapping and manipulation of nanostructures. Nat Nanotechnol. 2013; 8(11):807-19. DOI: 10.1038/nnano.2013.208. View

3.
Lee E, Luo T . Long-distance optical pulling of nanoparticle in a low index cavity using a single plane wave. Sci Adv. 2020; 6(21):eaaz3646. PMC: 7314558. DOI: 10.1126/sciadv.aaz3646. View

4.
Huang L, Zhao P, Liang F, Wang W . Single-cell 3D electro-rotation. Methods Cell Biol. 2018; 148:97-116. DOI: 10.1016/bs.mcb.2018.06.013. View

5.
Liang Z, Fan D . Visible light-gated reconfigurable rotary actuation of electric nanomotors. Sci Adv. 2018; 4(9):eaau0981. PMC: 6140629. DOI: 10.1126/sciadv.aau0981. View