» Articles » PMID: 33410698

Liquid Optothermoelectrics: Fundamentals and Applications

Overview
Journal Langmuir
Specialty Chemistry
Date 2021 Jan 7
PMID 33410698
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Liquid thermoelectricity describes the redistribution of ions in an electrolytic solution under the influence of temperature gradients, which leads to the formation of electric fields. The thermoelectric field is effective in driving the thermophoretic migration of charged colloidal particles for versatile manipulation. However, traditional macroscopic thermoelectric fields are not suitable for particle manipulations at high spatial resolution. Inspired by optical tweezers and relevant optical manipulation techniques, we employ laser interaction with light-absorbing nanostructures to achieve subtle heat management on the micro- and nanoscales. The resulting thermoelectric fields are exploited to develop new optical technologies, leading to a research field known as liquid optothermoelectrics. This Invited Feature Article highlights our recent works on advancing fundamentals, technologies, and applications of optothermoelectrics in colloidal solutions. The effects of light irradiation, substrates, electrolytes, and particles on the optothermoelectric manipulations of colloidal particles along with their theoretical limitations are discussed in detail. Our optothermoelectric technologies with the versatile capabilities of trapping, manipulating, and pulling colloidal particles at low optical power are finding applications in microswimmers and nanoscience. With its intricate interfacial processes and tremendous technological promise, optothermoelectrics in colloidal solutions will remain relevant for the foreseeable future.

Citing Articles

The role of temperature-induced effects generated by plasmonic nanostructures on particle delivery and manipulation: a review.

Kotsifaki D, Nic Chormaic S Nanophotonics. 2024; 11(10):2199-2218.

PMID: 39678096 PMC: 11636517. DOI: 10.1515/nanoph-2022-0014.


Optical Manipulation Heats up: Present and Future of Optothermal Manipulation.

Kollipara P, Chen Z, Zheng Y ACS Nano. 2023; 17(8):7051-7063.

PMID: 37022087 PMC: 10197158. DOI: 10.1021/acsnano.3c00536.


Multimodal Optothermal Manipulations along Various Surfaces.

Ding H, Kollipara P, Yao K, Chang Y, Dickinson D, Zheng Y ACS Nano. 2023; 17(10):9280-9289.

PMID: 37017427 PMC: 10391738. DOI: 10.1021/acsnano.3c00583.


Optothermal rotation of micro-/nano-objects.

Ding H, Chen Z, Ponce C, Zheng Y Chem Commun (Camb). 2023; 59(16):2208-2221.

PMID: 36723196 PMC: 10189788. DOI: 10.1039/d2cc06955e.


Optothermal rotation of micro-/nano-objects in liquids.

Ding H, Chen Z, Ponce C, Zheng Y ArXiv. 2023; .

PMID: 36713256 PMC: 9882580.


References
1.
Xuan M, Wu Z, Shao J, Dai L, Si T, He Q . Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. J Am Chem Soc. 2016; 138(20):6492-7. DOI: 10.1021/jacs.6b00902. View

2.
Lin L, Wang M, Peng X, Lissek E, Mao Z, Scarabelli L . Opto-thermoelectric nanotweezers. Nat Photonics. 2018; 12(4):195-201. PMC: 5958900. DOI: 10.1038/s41566-018-0134-3. View

3.
Majee A, Wurger A . Charging of heated colloidal particles using the electrolyte Seebeck effect. Phys Rev Lett. 2012; 108(11):118301. DOI: 10.1103/PhysRevLett.108.118301. View

4.
Morthomas J, Wurger A . Thermophoresis at a charged surface: the role of hydrodynamic slip. J Phys Condens Matter. 2011; 21(3):035103. DOI: 10.1088/0953-8984/21/3/035103. View

5.
Majee A, Wurger A . Collective thermoelectrophoresis of charged colloids. Phys Rev E Stat Nonlin Soft Matter Phys. 2011; 83(6 Pt 1):061403. DOI: 10.1103/PhysRevE.83.061403. View