» Articles » PMID: 32647232

Nano-imaging Trace Elements at Organelle Levels in Substantia Nigra Overexpressing α-synuclein to Model Parkinson's Disease

Overview
Journal Commun Biol
Specialty Biology
Date 2020 Jul 11
PMID 32647232
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Sub-cellular trace element quantifications of nano-heterogeneities in brain tissues offer unprecedented ways to explore at elemental level the interplay between cellular compartments in neurodegenerative pathologies. We designed a quasi-correlative method for analytical nanoimaging of the substantia nigra, based on transmission electron microscopy and synchrotron X-ray fluorescence. It combines ultrastructural identifications of cellular compartments and trace element nanoimaging near detection limits, for increased signal-to-noise ratios. Elemental composition of different organelles is compared to cytoplasmic and nuclear compartments in dopaminergic neurons of rat substantia nigra. They exhibit 150-460 ppm of Fe, with P/Zn/Fe-rich nucleoli in a P/S-depleted nuclear matrix and Ca-rich rough endoplasmic reticula. Cytoplasm analysis displays sub-micron Fe/S-rich granules, including lipofuscin. Following AAV-mediated overexpression of α-synuclein protein associated with Parkinson's disease, these granules shift towards higher Fe concentrations. This effect advocates for metal (Fe) dyshomeostasis in discrete cytoplasmic regions, illustrating the use of this method to explore neuronal dysfunction in brain diseases.

Citing Articles

Nano-XRF of lung fibrotic tissue reveals unexplored Ca, Zn, S and Fe metabolism: a novel approach to chronic lung diseases.

Falcones B, Kahnt M, Johansson U, Svobodova B, von Wachenfelt K, Brunmark C Cell Commun Signal. 2025; 23(1):67.

PMID: 39920750 PMC: 11806689. DOI: 10.1186/s12964-025-02076-4.


Native Cryo-Correlative Light and Synchrotron X-ray Fluorescence Imaging of Proteins and Essential Metals in Subcellular Neuronal Compartments.

Ortega R, Fernandez-Monreal M, Pied N, Roudeau S, Cloetens P, Carmona A Chem Biomed Imaging. 2024; 2(11):744-754.

PMID: 39610464 PMC: 11600181. DOI: 10.1021/cbmi.4c00038.


Nanoscale synchrotron x-ray analysis of intranuclear iron in melanised neurons of Parkinson's substantia nigra.

Brooks J, Everett J, Hill E, Billimoria K, Morris C, Sadler P Commun Biol. 2024; 7(1):1024.

PMID: 39164395 PMC: 11335769. DOI: 10.1038/s42003-024-06636-1.


A single dose of lipopolysaccharide elicits autofluorescence in the mouse brain.

Yang Y, Yu Q, Li B, Li S, Yang Z, Yuan F Front Aging Neurosci. 2023; 15:1126273.

PMID: 37020861 PMC: 10067636. DOI: 10.3389/fnagi.2023.1126273.


The position of geochemical variables as causal co-factors of diseases of unknown aetiology.

Davies T SN Appl Sci. 2022; 4(8):236.

PMID: 35909942 PMC: 9326422. DOI: 10.1007/s42452-022-05113-w.

References
1.
Rouault T . Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci. 2013; 14(8):551-64. DOI: 10.1038/nrn3453. View

2.
Bush A . The metal theory of Alzheimer's disease. J Alzheimers Dis. 2012; 33 Suppl 1:S277-81. DOI: 10.3233/JAD-2012-129011. View

3.
Sian-Hulsmann J, Mandel S, Youdim M, Riederer P . The relevance of iron in the pathogenesis of Parkinson's disease. J Neurochem. 2010; 118(6):939-57. DOI: 10.1111/j.1471-4159.2010.07132.x. View

4.
Richardson D, Lane D, Becker E, Huang M, Whitnall M, Suryo Rahmanto Y . Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci U S A. 2010; 107(24):10775-82. PMC: 2890738. DOI: 10.1073/pnas.0912925107. View

5.
Ibanez P, Bonnet A, Debarges B, Lohmann E, Tison F, Pollak P . Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. Lancet. 2004; 364(9440):1169-71. DOI: 10.1016/S0140-6736(04)17104-3. View