Parkinson's Disease: The Mitochondria-Iron Link
Overview
Affiliations
Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson's disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences-mitochondrial dysfunction, iron accumulation, and oxidative damage-generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinson's disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation-by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways-is a viable therapy for retarding this cycle.
Iron Accumulation and Lipid Peroxidation in Cellular Models of Nemaline Myopathies.
Lopez-Cabrera A, Pinero-Perez R, Alvarez-Cordoba M, Cilleros-Holgado P, Gomez-Fernandez D, Reche-Lopez D Int J Mol Sci. 2025; 26(4).
PMID: 40003902 PMC: 11855326. DOI: 10.3390/ijms26041434.
Genetic Markers of Postmortem Brain Iron.
Cornelis M, Fazlollahi A, Bennett D, Schneider J, Ayton S J Neurochem. 2025; 169(2):e16309.
PMID: 39918201 PMC: 11804167. DOI: 10.1111/jnc.16309.
Hemochromatosis neural archetype reveals iron disruption in motor circuits.
Loughnan R, Ahern J, Boyle M, Jernigan T, Hagler Jr D, Iversen J Sci Adv. 2024; 10(47):eadp4431.
PMID: 39576859 PMC: 11584016. DOI: 10.1126/sciadv.adp4431.
Liang T, Yang S, Qian C, Du L, Qian Z, Yung W Mol Neurobiol. 2023; 61(4):2006-2020.
PMID: 37833459 DOI: 10.1007/s12035-023-03668-2.
Garcia-Beltran O, Urrutia P, Nunez M Antioxidants (Basel). 2023; 12(2).
PMID: 36829773 PMC: 9952574. DOI: 10.3390/antiox12020214.