» Articles » PMID: 32627900

Chiral Chalcogenyl-Substituted Naphthyl- and Acenaphthyl-Silanes and Their Cations

Overview
Journal Chemistry
Specialty Chemistry
Date 2020 Jul 7
PMID 32627900
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Cyclic silylated chalconium borates 13[B(C F ) ] and 14[B(C F ) ] with peri-acenaphthyl and peri-naphthyl skeletons were synthesized from unsymmetrically substituted silanes 3, 4, 6, 7, 9 and 10 using the standard Corey protocol (Chalcogen Ch=O, S, Se, Te). The configuration at the chalcogen atom is trigonal pyramidal for Ch=S, Se, Te, leading to the formation of cis- and trans-isomers in the case of phenylmethylsilyl cations. With the bulkier tert-butyl group at silicon, the configuration at the chalcogen atoms is predetermined to give almost exclusively the trans-configurated cyclic silylchalconium ions. The barriers for the inversion of the configuration at the sulfur atoms of sulfonium ions 13 c and 14 a are substantial (72-74 kJ mol ) as shown by variable temperature NMR spectroscopy. The neighboring group effect of the thiophenyl substituent is sufficiently strong to preserve chiral information at the silicon atom at low temperatures.

Citing Articles

Easy Access to Enantiomerically Pure Heterocyclic Silicon-Chiral Phosphonium Cations and the Matched/Mismatched Case of Dihydrogen Release.

Fontana N, Espinosa-Jalapa N, Seidl M, Bauer J Chemistry. 2020; 27(8):2649-2653.

PMID: 33264430 PMC: 7898527. DOI: 10.1002/chem.202005171.


Intramolecular Halo Stabilization of Silyl Cations-Silylated Halonium- and Bis-Halo-Substituted Siliconium Borates.

Merk A, Buhrmann L, Kordts N, Gortemaker K, Schmidtmann M, Muller T Chemistry. 2020; 27(10):3496-3503.

PMID: 33184927 PMC: 7898513. DOI: 10.1002/chem.202004838.


Chiral Chalcogenyl-Substituted Naphthyl- and Acenaphthyl-Silanes and Their Cations.

Kunzler S, Rathjen S, Ruger K, Wurdemann M, Wernke M, Tholen P Chemistry. 2020; 26(69):16441-16449.

PMID: 32627900 PMC: 7756486. DOI: 10.1002/chem.202002977.

References
1.
Kordts N, Kunzler S, Rathjen S, Sieling T, Grossekappenberg H, Schmidtmann M . Silyl Chalconium Ions: Synthesis, Structure and Application in Hydrodefluorination Reactions. Chemistry. 2017; 23(42):10068-10079. DOI: 10.1002/chem.201700995. View

2.
Rendler S, Plefka O, Karatas B, Auer G, Frohlich R, Muck-Lichtenfeld C . Stereoselective alcohol silylation by dehydrogenative Si-O coupling: scope, limitations, and mechanism of the cu-h-catalyzed non-enzymatic kinetic resolution with silicon-stereogenic silanes. Chemistry. 2008; 14(36):11512-28. DOI: 10.1002/chem.200801377. View

3.
Kunzler S, Rathjen S, Ruger K, Wurdemann M, Wernke M, Tholen P . Chiral Chalcogenyl-Substituted Naphthyl- and Acenaphthyl-Silanes and Their Cations. Chemistry. 2020; 26(69):16441-16449. PMC: 7756486. DOI: 10.1002/chem.202002977. View

4.
Duttwyler S, Douvris C, Fackler N, Tham F, Reed C, Baldridge K . C-F activation of fluorobenzene by silylium carboranes: evidence for incipient phenyl cation reactivity. Angew Chem Int Ed Engl. 2010; 49(41):7519-22. DOI: 10.1002/anie.201003762. View

5.
Devillard M, de Bruin B, Siegler M, van der Vlugt J . Transition-Metal-Free Cleavage of CO. Chemistry. 2017; 23(55):13628-13632. PMC: 5656908. DOI: 10.1002/chem.201703798. View