» Articles » PMID: 32613204

Discovering the Anti-cancer Potential of Non-oncology Drugs by Systematic Viability Profiling

Abstract

Anti-cancer uses of non-oncology drugs have occasionally been found, but such discoveries have been serendipitous. We sought to create a public resource containing the growth inhibitory activity of 4,518 drugs tested across 578 human cancer cell lines. We used PRISM, a molecular barcoding method, to screen drugs against cell lines in pools. An unexpectedly large number of non-oncology drugs selectively inhibited subsets of cancer cell lines in a manner predictable from the cell lines' molecular features. Our findings include compounds that killed by inducing PDE3A-SLFN12 complex formation; vanadium-containing compounds whose killing depended on the sulfate transporter SLC26A2; the alcohol dependence drug disulfiram, which killed cells with low expression of metallothioneins; and the anti-inflammatory drug tepoxalin, which killed via the multi-drug resistance protein ABCB1. The PRISM drug repurposing resource (https://depmap.org/repurposing) is a starting point to develop new oncology therapeutics, and more rarely, for potential direct clinical translation.

Citing Articles

Harnessing transcriptional regulation of alternative end-joining to predict cancer treatment.

Espin R, Medina-Jover F, Siguenza-Andrade J, Farran-Matas S, Mateo F, Figueras A NAR Cancer. 2025; 7(1):zcaf007.

PMID: 40061566 PMC: 11886861. DOI: 10.1093/narcan/zcaf007.


SensitiveCancerGPT: Leveraging Generative Large Language Model on Structured Omics Data to Optimize Drug Sensitivity Prediction.

Chowdhury S, Rajaganapathy S, Sun L, Wang L, Yang P, Cerhan J bioRxiv. 2025; .

PMID: 40060567 PMC: 11888479. DOI: 10.1101/2025.02.27.640661.


Deciphering the role of CNIH4 in pan-cancer landscapes and its significance in breast cancer progression.

Xu Y, Lai Z, Li C Front Genet. 2025; 16:1536620.

PMID: 40051704 PMC: 11882561. DOI: 10.3389/fgene.2025.1536620.


Cancer-intrinsic Cxcl5 orchestrates a global metabolic reprogramming for resistance to oxidative cell death in 3D.

Seo R, de Guzman A, Park S, Lee J, Kang S Cell Death Differ. 2025; .

PMID: 40050422 DOI: 10.1038/s41418-025-01466-y.


DrBioRight 2.0: an LLM-powered bioinformatics chatbot for large-scale cancer functional proteomics analysis.

Liu W, Li J, Tang Y, Zhao Y, Liu C, Song M Nat Commun. 2025; 16(1):2256.

PMID: 40050282 PMC: 11885830. DOI: 10.1038/s41467-025-57430-4.


References
1.
Stover E, Baco M, Cohen O, Li Y, Christie E, Bagul M . Pooled Genomic Screens Identify Anti-apoptotic Genes as Targetable Mediators of Chemotherapy Resistance in Ovarian Cancer. Mol Cancer Res. 2019; 17(11):2281-2293. PMC: 6825578. DOI: 10.1158/1541-7786.MCR-18-1243. View

2.
Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian Z, Du J . Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012; 487(7408):500-4. PMC: 3711467. DOI: 10.1038/nature11183. View

3.
. Integrated genomic analyses of ovarian carcinoma. Nature. 2011; 474(7353):609-15. PMC: 3163504. DOI: 10.1038/nature10166. View

4.
Love M, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. PMC: 4302049. DOI: 10.1186/s13059-014-0550-8. View

5.
Smirnov P, Safikhani Z, El-Hachem N, Wang D, She A, Olsen C . PharmacoGx: an R package for analysis of large pharmacogenomic datasets. Bioinformatics. 2015; 32(8):1244-6. DOI: 10.1093/bioinformatics/btv723. View