» Articles » PMID: 32597519

High-sensitivity CEST Mapping Using a Spatiotemporal Correlation-enhanced Method

Overview
Journal Magn Reson Med
Publisher Wiley
Specialty Radiology
Date 2020 Jun 30
PMID 32597519
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: To obtain high-sensitivity CEST maps by exploiting the spatiotemporal correlation between CEST images.

Methods: A postprocessing method accomplished by multilinear singular value decomposition (MLSVD) was used to enhance the CEST SNR by exploiting the correlation between the Z-spectrum for each voxel and the low-rank property of the overall CEST data. The performance of this method was evaluated using CrCEST in ischemic mouse brain at 11.7 tesla. Then, MLSVD CEST was applied to obtain Cr, amide, and amine CEST maps of the ischemic mouse brain to demonstrate its general applications.

Results: Complex-valued Gaussian noise was added to CEST k-space data to mimic a low SNR situation. MLSVD CEST analysis was able to suppress the noise, recover the degraded CEST peak, and provide better CrCEST quality compared to the smoothing and singular value decomposition (SVD)-based denoising methods. High-resolution Cr, amide, and amine CEST maps of an ischemic stroke using MLSVD CEST suggest that CrCEST is also a sensitive pH mapping method, and a wide range of pH changes can be detected by combing CrCEST with amine CEST at high magnetic fields.

Conclusion: MLSVD CEST provides a simple and efficient way to improve the SNR of CEST images.

Citing Articles

Toward quantitative CEST imaging of glutamate in the mouse brain using a multi-pool exchange model calibrated by H-MRS.

Maguin C, Mougel E, Valette J, Flament J Magn Reson Med. 2024; 93(3):1394-1410.

PMID: 39449296 PMC: 11680732. DOI: 10.1002/mrm.30353.


Development and Validation of Four Different Methods to Improve MRI-CEST Tumor pH Mapping in Presence of Fat.

Gammaraccio F, Villano D, Irrera P, Anemone A, Carella A, Corrado A J Imaging. 2024; 10(7).

PMID: 39057737 PMC: 11277679. DOI: 10.3390/jimaging10070166.


A Denoising Convolutional Autoencoder for SNR Enhancement in Chemical Exchange Saturation Transfer imaging: (DCAE-CEST).

Kurmi Y, Viswanathan M, Zu Z bioRxiv. 2024; .

PMID: 38895366 PMC: 11185751. DOI: 10.1101/2024.06.07.597818.


Whole-cerebrum guanidino and amide CEST mapping at 3 T by a 3D stack-of-spirals gradient echo acquisition.

Wang K, Ju L, Song Y, Blair L, Xie K, Liu C Magn Reson Med. 2024; 92(4):1456-1470.

PMID: 38748853 PMC: 11262991. DOI: 10.1002/mrm.30134.


Specific and rapid guanidinium CEST imaging using double saturation power and QUASS analysis in a rodent model of global ischemia.

Zhou I, Ji Y, Zhao Y, Viswanathan M, Sun P, Zu Z Magn Reson Med. 2023; 91(4):1512-1527.

PMID: 38098305 PMC: 10872646. DOI: 10.1002/mrm.29960.


References
1.
Zaiss M, Zu Z, Xu J, Schuenke P, Gochberg D, Gore J . A combined analytical solution for chemical exchange saturation transfer and semi-solid magnetization transfer. NMR Biomed. 2014; 28(2):217-30. PMC: 4297271. DOI: 10.1002/nbm.3237. View

2.
van Zijl P, Jones C, Ren J, Malloy C, Sherry A . MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci U S A. 2007; 104(11):4359-64. PMC: 1838607. DOI: 10.1073/pnas.0700281104. View

3.
Zhou J, Payen J, Wilson D, Traystman R, van Zijl P . Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003; 9(8):1085-90. DOI: 10.1038/nm907. View

4.
Zhou I, Lu D, Ji Y, Wu L, Wang E, Cheung J . Determination of multipool contributions to endogenous amide proton transfer effects in global ischemia with high spectral resolution in vivo chemical exchange saturation transfer MRI. Magn Reson Med. 2018; 81(1):645-652. PMC: 6258351. DOI: 10.1002/mrm.27385. View

5.
Zong X, Wang P, Kim S, Jin T . Sensitivity and source of amine-proton exchange and amide-proton transfer magnetic resonance imaging in cerebral ischemia. Magn Reson Med. 2013; 71(1):118-32. PMC: 3655131. DOI: 10.1002/mrm.24639. View