» Articles » PMID: 32561646

Hedgehog-FGF Signaling Axis Patterns Anterior Mesoderm During Gastrulation

Abstract

The mechanisms used by embryos to pattern tissues across their axes has fascinated developmental biologists since the founding of embryology. Here, using single-cell technology, we interrogate complex patterning defects and define a Hedgehog (Hh)-fibroblast growth factor (FGF) signaling axis required for anterior mesoderm lineage development during gastrulation. Single-cell transcriptome analysis of Hh-deficient mesoderm revealed selective deficits in anterior mesoderm populations, culminating in defects to anterior embryonic structures, including the pharyngeal arches, heart, and anterior somites. Transcriptional profiling of Hh-deficient mesoderm during gastrulation revealed disruptions to both transcriptional patterning of the mesoderm and FGF signaling for mesoderm migration. Mesoderm-specific / double-mutants recapitulated anterior mesoderm defects and Hh-dependent GLI transcription factors modulated enhancers at FGF gene loci. Cellular migration defects during gastrulation induced by Hh pathway antagonism were mitigated by the addition of FGF4 protein. These findings implicate a multicomponent signaling hierarchy activated by Hh ligands from the embryonic node and executed by FGF signals in nascent mesoderm to control anterior mesoderm patterning.

Citing Articles

Sonic Hedgehog signaling regulates the optimal differentiation pace from early-stage mesoderm to cardiogenic mesoderm in mice.

Inoue S, Nosetani M, Nakajima Y, Sakaki S, Kato H, Saba R Dev Growth Differ. 2025; 67(2):75-84.

PMID: 39783159 PMC: 11842887. DOI: 10.1111/dgd.12955.


The molecular mechanisms of cardiac development and related diseases.

Li Y, Du J, Deng S, Liu B, Jing X, Yan Y Signal Transduct Target Ther. 2024; 9(1):368.

PMID: 39715759 PMC: 11666744. DOI: 10.1038/s41392-024-02069-8.


An explainable map of human gastruloid morphospace reveals gastrulation failure modes and predicts teratogens.

Rufo J, Qiu C, Han D, Baxter N, Daley G, Wilson M bioRxiv. 2024; .

PMID: 39386623 PMC: 11463602. DOI: 10.1101/2024.09.20.614192.


Signaling Pathways Governing Cardiomyocyte Differentiation.

Mensah I, Gowher H Genes (Basel). 2024; 15(6).

PMID: 38927734 PMC: 11202427. DOI: 10.3390/genes15060798.


P4HA2 hydroxylates SUFU to regulate the paracrine Hedgehog signaling and promote B-cell lymphoma progression.

Li Q, Liu Y, Wu J, Zhu Z, Fan J, Zhai L Leukemia. 2024; 38(8):1751-1763.

PMID: 38909089 PMC: 11286522. DOI: 10.1038/s41375-024-02313-8.


References
1.
Vokes S, Yatskievych T, Heimark R, McMahon J, McMahon A, Antin P . Hedgehog signaling is essential for endothelial tube formation during vasculogenesis. Development. 2004; 131(17):4371-80. DOI: 10.1242/dev.01304. View

2.
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck 3rd W . Comprehensive Integration of Single-Cell Data. Cell. 2019; 177(7):1888-1902.e21. PMC: 6687398. DOI: 10.1016/j.cell.2019.05.031. View

3.
Weinstein D, Ruiz i Altaba A, Chen W, Hoodless P, Prezioso V, Jessell T . The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell. 1994; 78(4):575-88. DOI: 10.1016/0092-8674(94)90523-1. View

4.
Francou A, Saint-Michel E, Mesbah K, Theveniau-Ruissy M, Rana M, Christoffels V . Second heart field cardiac progenitor cells in the early mouse embryo. Biochim Biophys Acta. 2012; 1833(4):795-8. DOI: 10.1016/j.bbamcr.2012.10.003. View

5.
Tam P, Behringer R . Mouse gastrulation: the formation of a mammalian body plan. Mech Dev. 1998; 68(1-2):3-25. DOI: 10.1016/s0925-4773(97)00123-8. View