» Articles » PMID: 32542026

Estimation of Non-null SNP Effect Size Distributions Enables the Detection of Enriched Genes Underlying Complex Traits

Overview
Journal PLoS Genet
Specialty Genetics
Date 2020 Jun 17
PMID 32542026
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Traditional univariate genome-wide association studies generate false positives and negatives due to difficulties distinguishing associated variants from variants with spurious nonzero effects that do not directly influence the trait. Recent efforts have been directed at identifying genes or signaling pathways enriched for mutations in quantitative traits or case-control studies, but these can be computationally costly and hampered by strict model assumptions. Here, we present gene-ε, a new approach for identifying statistical associations between sets of variants and quantitative traits. Our key insight is that enrichment studies on the gene-level are improved when we reformulate the genome-wide SNP-level null hypothesis to identify spurious small-to-intermediate SNP effects and classify them as non-causal. gene-ε efficiently identifies enriched genes under a variety of simulated genetic architectures, achieving greater than a 90% true positive rate at 1% false positive rate for polygenic traits. Lastly, we apply gene-ε to summary statistics derived from six quantitative traits using European-ancestry individuals in the UK Biobank, and identify enriched genes that are in biologically relevant pathways.

Citing Articles

ML-MAGES: A machine learning framework for multivariate genetic association analyses with genes and effect size shrinkage.

Liu X, Crawford L, Ramachandran S bioRxiv. 2025; .

PMID: 39990474 PMC: 11844528. DOI: 10.1101/2025.02.11.637655.


Bayesian Effect Size Ranking to Prioritise Genetic Risk Variants in Common Diseases for Follow-Up Studies.

Crouch D, Inshaw J, Robertson C, Ng E, Zhang J, Chen W Genet Epidemiol. 2025; 49(1):e22608.

PMID: 39749473 PMC: 11696485. DOI: 10.1002/gepi.22608.


BEATRICE: Bayesian fine-mapping from summary data using deep variational inference.

Ghosal S, Schatz M, Venkataraman A Bioinformatics. 2024; 40(10).

PMID: 39360993 PMC: 11496888. DOI: 10.1093/bioinformatics/btae590.


Discovering non-additive heritability using additive GWAS summary statistics.

Smith S, Darnell G, Udwin D, Stamp J, Harpak A, Ramachandran S Elife. 2024; 13.

PMID: 38913556 PMC: 11196113. DOI: 10.7554/eLife.90459.


BEATRICE: Bayesian Fine-mapping from Summary Data using Deep Variational Inference.

Ghosal S, Schatz M, Venkataraman A bioRxiv. 2023; .

PMID: 36993396 PMC: 10055416. DOI: 10.1101/2023.03.24.534116.


References
1.
Soranzo N, Spector T, Mangino M, Kuhnel B, Rendon A, Teumer A . A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet. 2009; 41(11):1182-90. PMC: 3108459. DOI: 10.1038/ng.467. View

2.
Bycroft C, Freeman C, Petkova D, Band G, Elliott L, Sharp K . The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018; 562(7726):203-209. PMC: 6786975. DOI: 10.1038/s41586-018-0579-z. View

3.
Lee S, Wray N, Goddard M, Visscher P . Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet. 2011; 88(3):294-305. PMC: 3059431. DOI: 10.1016/j.ajhg.2011.02.002. View

4.
Visscher P, Brown M, McCarthy M, Yang J . Five years of GWAS discovery. Am J Hum Genet. 2012; 90(1):7-24. PMC: 3257326. DOI: 10.1016/j.ajhg.2011.11.029. View

5.
Xue A, Wu Y, Zhu Z, Zhang F, Kemper K, Zheng Z . Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun. 2018; 9(1):2941. PMC: 6063971. DOI: 10.1038/s41467-018-04951-w. View