» Articles » PMID: 22479213

Heritability and Genetic Correlations Explained by Common SNPs for Metabolic Syndrome Traits

Overview
Journal PLoS Genet
Specialty Genetics
Date 2012 Apr 6
PMID 22479213
Citations 123
Authors
Affiliations
Soon will be listed here.
Abstract

We used a bivariate (multivariate) linear mixed-effects model to estimate the narrow-sense heritability (h(2)) and heritability explained by the common SNPs (h(g)(2)) for several metabolic syndrome (MetS) traits and the genetic correlation between pairs of traits for the Atherosclerosis Risk in Communities (ARIC) genome-wide association study (GWAS) population. MetS traits included body-mass index (BMI), waist-to-hip ratio (WHR), systolic blood pressure (SBP), fasting glucose (GLU), fasting insulin (INS), fasting trigylcerides (TG), and fasting high-density lipoprotein (HDL). We found the percentage of h(2) accounted for by common SNPs to be 58% of h(2) for height, 41% for BMI, 46% for WHR, 30% for GLU, 39% for INS, 34% for TG, 25% for HDL, and 80% for SBP. We confirmed prior reports for height and BMI using the ARIC population and independently in the Framingham Heart Study (FHS) population. We demonstrated that the multivariate model supported large genetic correlations between BMI and WHR and between TG and HDL. We also showed that the genetic correlations between the MetS traits are directly proportional to the phenotypic correlations.

Citing Articles

Common and rare genetic variation intersects with ancestry to influence human skin and plasma carotenoid concentrations.

Han Y, Mwesigwa S, Wu Q, Laska M, Jilcott Pitts S, Moran N medRxiv. 2025; .

PMID: 39763521 PMC: 11703293. DOI: 10.1101/2024.12.20.24319465.


Causal effects of omega-6 and LDL-C on androgenetic alopecia: A Mendelian randomization study.

Peilong L, Quanlin Z, Shuqing G Skin Res Technol. 2024; 30(8):e70000.

PMID: 39138832 PMC: 11322220. DOI: 10.1111/srt.70000.


Identification of shared genetic risks underlying metabolic syndrome and its related traits in the Korean population.

Kim J, Cho Y Front Genet. 2024; 15:1417262.

PMID: 39050255 PMC: 11266026. DOI: 10.3389/fgene.2024.1417262.


Variant level heritability estimates of type 2 diabetes in African Americans.

Armstrong N, Patki A, Srinivasasainagendra V, Ge T, Lange L, Kottyan L Sci Rep. 2024; 14(1):14009.

PMID: 38890458 PMC: 11189523. DOI: 10.1038/s41598-024-64711-3.


Genetic analysis of cassava brown streak disease root necrosis using image analysis and genome-wide association studies.

Nandudu L, Strock C, Ogbonna A, Kawuki R, Jannink J Front Plant Sci. 2024; 15:1360729.

PMID: 38562560 PMC: 10982329. DOI: 10.3389/fpls.2024.1360729.


References
1.
Lee S, Wray N, Goddard M, Visscher P . Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet. 2011; 88(3):294-305. PMC: 3059431. DOI: 10.1016/j.ajhg.2011.02.002. View

2.
Lander E . Initial impact of the sequencing of the human genome. Nature. 2011; 470(7333):187-97. DOI: 10.1038/nature09792. View

3.
Coady S, Jaquish C, Fabsitz R, Larson M, Cupples L, Myers R . Genetic variability of adult body mass index: a longitudinal assessment in framingham families. Obes Res. 2002; 10(7):675-81. DOI: 10.1038/oby.2002.91. View

4.
Speliotes E, Willer C, Berndt S, Monda K, Thorleifsson G, Jackson A . Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010; 42(11):937-48. PMC: 3014648. DOI: 10.1038/ng.686. View

5.
Yang J, Lee S, Goddard M, Visscher P . GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2010; 88(1):76-82. PMC: 3014363. DOI: 10.1016/j.ajhg.2010.11.011. View