» Articles » PMID: 32537121

Osteogenic Potential of Poly(ethylene Glycol)-amorphous Calcium Phosphate Composites on Human Mesenchymal Stem Cells

Overview
Journal J Tissue Eng
Date 2020 Jun 16
PMID 32537121
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Synthetic hydrogel-amorphous calcium phosphate composites are promising candidates to substitute biologically sourced scaffolds for bone repair. While the hydrogel matrix serves as a template for stem cell colonisation, amorphous calcium phosphate s provide mechanical integrity with the potential to stimulate osteogenic differentiation. Here, we utilise composites of poly(ethylene glycol)-based hydrogels and differently stabilised amorphous calcium phosphate to investigate potential effects on attachment and osteogenic differentiation of human mesenchymal stem cells. We found that functionalisation with integrin binding motifs in the form of RGD tripeptide was necessary to allow adhesion of large numbers of cells in spread morphology. Slow dissolution of amorphous calcium phosphate mineral in the scaffolds over at least 21 days was observed, resulting in the release of calcium and zinc ions into the cell culture medium. While we qualitatively observed an increasingly mineralised extracellular matrix along with calcium deposition in the presence of amorphous calcium phosphate-loaded scaffolds, we did not observe significant changes in the expression of selected osteogenic markers.

Citing Articles

Bioactive and Biodegradable Polycaprolactone-Based Nanocomposite for Bone Repair Applications.

Emadi H, Karevan M, Masoudi Rad M, Sadeghzade S, Pahlevanzadeh F, Khodaei M Polymers (Basel). 2023; 15(17).

PMID: 37688243 PMC: 10490551. DOI: 10.3390/polym15173617.


Immunomodulatory PEG-CRGD Hydrogels Promote Chondrogenic Differentiation of PBMSCs.

Yang M, Deng R, Yuan F, Zhang J, Zhang Z, Chen Y Pharmaceutics. 2022; 14(12).

PMID: 36559119 PMC: 9780903. DOI: 10.3390/pharmaceutics14122622.


Design and clinical application of injectable hydrogels for musculoskeletal therapy.

Ovrebo O, Perale G, Wojciechowski J, Echalier C, Jeffers J, Stevens M Bioeng Transl Med. 2022; 7(2):e10295.

PMID: 35600661 PMC: 9115710. DOI: 10.1002/btm2.10295.


An antibacterial and injectable calcium phosphate scaffold delivering human periodontal ligament stem cells for bone tissue engineering.

Chen H, Yang H, Weir M, Schneider A, Ren K, Homayounfar N RSC Adv. 2022; 10(66):40157-40170.

PMID: 35520873 PMC: 9057516. DOI: 10.1039/d0ra06873j.


Function and Mechanism of RGD in Bone and Cartilage Tissue Engineering.

Yang M, Zhang Z, Liu Y, Chen Y, Deng R, Zhang Z Front Bioeng Biotechnol. 2022; 9:773636.

PMID: 34976971 PMC: 8714999. DOI: 10.3389/fbioe.2021.773636.


References
1.
Silver I, Murrills R, Etherington D . Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res. 1988; 175(2):266-76. DOI: 10.1016/0014-4827(88)90191-7. View

2.
Seo H, Cho Y, Kim T, Shin H, Kwun I . Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract. 2010; 4(5):356-61. PMC: 2981717. DOI: 10.4162/nrp.2010.4.5.356. View

3.
Lutolf M, Hubbell J . Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005; 23(1):47-55. DOI: 10.1038/nbt1055. View

4.
Schweikle M, Zinn T, Lund R, Tiainen H . Injectable synthetic hydrogel for bone regeneration: Physicochemical characterisation of a high and a low pH gelling system. Mater Sci Eng C Mater Biol Appl. 2018; 90:67-76. DOI: 10.1016/j.msec.2018.04.049. View

5.
Patterson J, Hubbell J . Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials. 2010; 31(30):7836-45. DOI: 10.1016/j.biomaterials.2010.06.061. View