» Articles » PMID: 32527001

Study of the Dielectric Properties of Artificial Sweat Mixtures at Microwave Frequencies

Overview
Specialty Biotechnology
Date 2020 Jun 13
PMID 32527001
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Analysis of sweat is of interest for a variety of diagnosis and monitoring applications in healthcare. In this work, detailed measurements of the dielectric properties of solutions representing the major components of sweat are presented. The measurements include aqueous solutions of sodium chloride (NaCl), potassium chloride (KCl), urea, and lactic acid, as well as their mixtures. Moreover, mixtures of NaCl, KCl, urea, and lactic acid, mimicking artificial sweat at different hydration states, are characterized, and the data are fitted to a Cole-Cole model. The complex dielectric permittivity for all prepared solutions and mixtures is studied in the range of 1-20 GHz, at temperature of 23 °C, with ionic concentrations in the range of 0.01-1.7 mol/L.

Citing Articles

Microwave biosensor for the detection of growth inhibition of human liver cancer cells at different concentrations of chemotherapeutic drug.

Zhao J, Wang Y, Shi B, Wang Y, Jiang Y, Yang G Front Bioeng Biotechnol. 2024; 12:1398189.

PMID: 38803847 PMC: 11128630. DOI: 10.3389/fbioe.2024.1398189.


Dielectric property measurement of human sweat using attenuated total reflection terahertz time domain spectroscopy.

Hashimoto K, Ben Ishai P, Brundermann E, Tripathi S Biomed Opt Express. 2022; 13(9):4572-4582.

PMID: 36187269 PMC: 9484438. DOI: 10.1364/BOE.467450.


Non-Invasive Microwave-Based Imaging System for Early Detection of Breast Tumours.

Blanco-Angulo C, Martinez-Lozano A, Gutierrez-Mazon R, Juan C, Garcia-Martinez H, Arias-Rodriguez J Biosensors (Basel). 2022; 12(9).

PMID: 36140137 PMC: 9496561. DOI: 10.3390/bios12090752.


Visualization of microwave near-field distribution in sodium chloride and glucose aqueous solutions by a thermo-elastic optical indicator microscope.

Baghdasaryan Z, Babajanyan A, Odabashyan L, Lee J, Friedman B, Lee K Sci Rep. 2021; 11(1):2589.

PMID: 33510224 PMC: 7843988. DOI: 10.1038/s41598-020-80328-8.

References
1.
Majumder S, Mondal T, Deen M . Wearable Sensors for Remote Health Monitoring. Sensors (Basel). 2017; 17(1). PMC: 5298703. DOI: 10.3390/s17010130. View

2.
Callewaert C, Buysschaert B, Vossen E, Fievez V, Van de Wiele T, Boon N . Artificial sweat composition to grow and sustain a mixed human axillary microbiome. J Microbiol Methods. 2014; 103:6-8. DOI: 10.1016/j.mimet.2014.05.005. View

3.
Choi D, Thaxton A, Jeong I, Kim K, Sosnay P, Cutting G . Sweat test for cystic fibrosis: Wearable sweat sensor vs. standard laboratory test. J Cyst Fibros. 2018; 17(4):e35-e38. DOI: 10.1016/j.jcf.2018.03.005. View

4.
Eldamak A, Fear E . Conformal and Disposable Antenna-Based Sensor for Non-Invasive Sweat Monitoring. Sensors (Basel). 2018; 18(12). PMC: 6308724. DOI: 10.3390/s18124088. View

5.
Gulich R, Kohler M, Lunkenheimer P, Loidl A . Dielectric spectroscopy on aqueous electrolytic solutions. Radiat Environ Biophys. 2008; 48(1):107-14. DOI: 10.1007/s00411-008-0195-7. View