» Articles » PMID: 32461553

Integrative Analysis of Reference Epigenomes in 20 Rice Varieties

Overview
Journal Nat Commun
Specialty Biology
Date 2020 May 29
PMID 32461553
Citations 76
Authors
Affiliations
Soon will be listed here.
Abstract

Epigenomic modifications are instrumental for transcriptional regulation, but comprehensive reference epigenomes remain unexplored in rice. Here, we develop an enhanced chromatin immunoprecipitation (eChIP) approach for plants, and generate genome-wide profiling of five histone modifications and RNA polymerase II occupancy with it. By integrating chromatin accessibility, DNA methylation, and transcriptome datasets, we construct comprehensive epigenome landscapes across various tissues in 20 representative rice varieties. Approximately 81.8% of rice genomes are annotated with different epigenomic properties. Refinement of promoter regions using open chromatin and H3K4me3-marked regions provides insight into transcriptional regulation. We identify extensive enhancer-like promoters with potential enhancer function on transcriptional regulation through chromatin interactions. Active and repressive histone modifications and the predicted enhancers vary largely across tissues, whereas inactive chromatin states are relatively stable. Together, these datasets constitute a valuable resource for functional element annotation in rice and indicate the central role of epigenomic information in understanding transcriptional regulation.

Citing Articles

mRNA mA regulates gene expression via H3K4me3 shift in 5' UTR.

Yang Y, Huang Y, Wang T, Li S, Jiang J, Chen S Genome Biol. 2025; 26(1):54.

PMID: 40075435 PMC: 11900566. DOI: 10.1186/s13059-025-03515-8.


EGDB: A comprehensive multi-omics database for energy grasses and the epigenomic atlas of pearl millet.

Luo L, Lin D, Li J, Chen H, Qu Q, Zhang L Imeta. 2025; 4(1):e263.

PMID: 40027491 PMC: 11865331. DOI: 10.1002/imt2.263.


Simultaneous profiling of chromatin-associated RNA at targeted DNA loci and RNA-RNA Interactions through TaDRIM-seq.

Ding C, Chen G, Luan S, Gao R, Fan Y, Zhang Y Nat Commun. 2025; 16(1):1500.

PMID: 39929795 PMC: 11811046. DOI: 10.1038/s41467-024-53534-5.


The chromatin remodeling factor OsINO80 promotes H3K27me3 and H3K9me2 deposition and maintains TE silencing in rice.

Du K, Wu J, Wang J, Xie W, Yin L, Li X Nat Commun. 2024; 15(1):10919.

PMID: 39738209 PMC: 11686384. DOI: 10.1038/s41467-024-55387-4.


Genome-wide mapping of main histone modifications and coordination regulation of metabolic genes under salt stress in pea ().

Wan H, Cao L, Wang P, Hu H, Guo R, Chen J Hortic Res. 2024; 11(12):uhae259.

PMID: 39664693 PMC: 11630261. DOI: 10.1093/hr/uhae259.


References
1.
Ji L, Neumann D, Schmitz R . Crop Epigenomics: Identifying, Unlocking, and Harnessing Cryptic Variation in Crop Genomes. Mol Plant. 2015; 8(6):860-70. PMC: 5121661. DOI: 10.1016/j.molp.2015.01.021. View

2.
Ernst J, Kellis M . Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol. 2010; 28(8):817-25. PMC: 2919626. DOI: 10.1038/nbt.1662. View

3.
Liu Y, Tian T, Zhang K, You Q, Yan H, Zhao N . PCSD: a plant chromatin state database. Nucleic Acids Res. 2017; 46(D1):D1157-D1167. PMC: 5753246. DOI: 10.1093/nar/gkx919. View

4.
Lane A, Niederhuth C, Ji L, Schmitz R . pENCODE: a plant encyclopedia of DNA elements. Annu Rev Genet. 2014; 48:49-70. PMC: 4463858. DOI: 10.1146/annurev-genet-120213-092443. View

5.
Sequeira-Mendes J, Araguez I, Peiro R, Mendez-Giraldez R, Zhang X, Jacobsen S . The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States. Plant Cell. 2014; 26(6):2351-2366. PMC: 4114938. DOI: 10.1105/tpc.114.124578. View