» Articles » PMID: 21487388

Integrative Epigenomic Mapping Defines Four Main Chromatin States in Arabidopsis

Abstract

Post-translational modification of histones and DNA methylation are important components of chromatin-level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover ∼90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin-based regulatory mechanisms in plants.

Citing Articles

RNA Pol-II transcripts in nucleolar associated domains of cancer cell nucleoli.

Chowdhury S, Shilpi A, Felsenfeld G Nucleus. 2025; 16(1):2468597.

PMID: 39987497 PMC: 11849958. DOI: 10.1080/19491034.2025.2468597.


Genome-wide mapping of main histone modifications and coordination regulation of metabolic genes under salt stress in pea ().

Wan H, Cao L, Wang P, Hu H, Guo R, Chen J Hortic Res. 2024; 11(12):uhae259.

PMID: 39664693 PMC: 11630261. DOI: 10.1093/hr/uhae259.


Characterizations of Nuclear Organization and Chromatin Modifications in Mature Embryos from Arabidopsis Dry Seeds.

Simon L, Verdier M, Probst A Methods Mol Biol. 2024; 2873:247-262.

PMID: 39576606 DOI: 10.1007/978-1-0716-4228-3_14.


Insights into the Epigenetic Basis of Plant Salt Tolerance.

Zhang D, Zhang D, Zhang Y, Li G, Sun D, Zhou B Int J Mol Sci. 2024; 25(21).

PMID: 39519250 PMC: 11547110. DOI: 10.3390/ijms252111698.


Diurnal control of H3K27me1 deposition shapes expression of a subset of cell cycle and DNA damage response genes.

Fung-Uceda J, Gomez M, Rodriguez-Casillas L, Gonzalez-Gil A, Gutierrez C Plant J. 2024; 120(6):2325-2336.

PMID: 39487594 PMC: 11658180. DOI: 10.1111/tpj.17114.


References
1.
Kohler C, Hennig L . Regulation of cell identity by plant Polycomb and trithorax group proteins. Curr Opin Genet Dev. 2010; 20(5):541-7. DOI: 10.1016/j.gde.2010.04.015. View

2.
Zhang X, Clarenz O, Cokus S, Bernatavichute Y, Pellegrini M, Goodrich J . Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 2007; 5(5):e129. PMC: 1852588. DOI: 10.1371/journal.pbio.0050129. View

3.
Jenuwein T, Allis C . Translating the histone code. Science. 2001; 293(5532):1074-80. DOI: 10.1126/science.1063127. View

4.
Suganuma T, Workman J . Crosstalk among Histone Modifications. Cell. 2008; 135(4):604-7. DOI: 10.1016/j.cell.2008.10.036. View

5.
Samson F, Brunaud V, Duchene S, De Oliveira Y, Caboche M, Lecharny A . FLAGdb++: a database for the functional analysis of the Arabidopsis genome. Nucleic Acids Res. 2003; 32(Database issue):D347-50. PMC: 308868. DOI: 10.1093/nar/gkh134. View