» Articles » PMID: 32444597

CAVD, Towards Better Characterization of Void Space for Ionic Transport Analysis

Overview
Journal Sci Data
Specialty Science
Date 2020 May 24
PMID 32444597
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Geometric crystal structure analysis using three-dimensional Voronoi tessellation provides intuitive insights into the ionic transport behavior of metal-ion electrode materials or solid electrolytes by mapping the void space in a framework onto a network. The existing tools typically consider only the local voids by mapping them with Voronoi polyhedra vertices and then define the mobile ions pathways using the Voronoi edges connecting these vertices. We show that in some structures mobile ions are located on Voronoi polyhedra faces and thus cannot be located by a standard approach. To address this deficiency, we extend the method to include Voronoi faces in the constructed network. This method has been implemented in the CAVD python package. Its effectiveness is demonstrated by 99% recovery rate for the lattice sites of mobile ions in 6,955 Li-, Na-, Mg- and Al-containing ionic compounds extracted from the Inorganic Crystal Structure Database. In addition, various quantitative descriptors of the network can be used to identify and rank the materials and further used in materials databases for machine learning.

Citing Articles

Halide solid-state electrolytes for all-solid-state batteries: structural design, synthesis, environmental stability, interface optimization and challenges.

Tao B, Zhong D, Li H, Wang G, Chang H Chem Sci. 2023; 14(33):8693-8722.

PMID: 37621443 PMC: 10445474. DOI: 10.1039/d3sc02093b.


Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes.

Zhang J, Yan Y, Wang X, Cui Y, Zhang Z, Wang S Nat Commun. 2023; 14(1):3701.

PMID: 37349302 PMC: 10287750. DOI: 10.1038/s41467-023-39384-7.


CAVD, towards better characterization of void space for ionic transport analysis.

He B, Ye A, Chi S, Mi P, Ran Y, Zhang L Sci Data. 2020; 7(1):153.

PMID: 32444597 PMC: 7244509. DOI: 10.1038/s41597-020-0491-x.


High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms.

He B, Chi S, Ye A, Mi P, Zhang L, Pu B Sci Data. 2020; 7(1):151.

PMID: 32439922 PMC: 7242435. DOI: 10.1038/s41597-020-0474-y.

References
1.
Belsky A, Hellenbrandt M, Karen V, Luksch P . New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr B. 2002; 58(Pt 3 Pt 1):364-9. DOI: 10.1107/s0108768102006948. View

2.
He B, Chi S, Ye A, Mi P, Zhang L, Pu B . High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms. Sci Data. 2020; 7(1):151. PMC: 7242435. DOI: 10.1038/s41597-020-0474-y. View

3.
Ghiringhelli L, Vybiral J, Levchenko S, Draxl C, Scheffler M . Big data of materials science: critical role of the descriptor. Phys Rev Lett. 2015; 114(10):105503. DOI: 10.1103/PhysRevLett.114.105503. View

4.
Anurova N, Blatov V . Analysis of ion-migration paths in inorganic frameworks by means of tilings and Voronoi-Dirichlet partition: a comparison. Acta Crystallogr B. 2009; 65(Pt 4):426-34. DOI: 10.1107/S0108768109019880. View

5.
Blatov V, Ilyushin G, Blatova O, Anurova N, Ivanov-Schits A, Demyanets L . Analysis of migration paths in fast-ion conductors with Voronoi-Dirichlet partition. Acta Crystallogr B. 2006; 62(Pt 6):1010-8. DOI: 10.1107/S0108768106039425. View