» Articles » PMID: 26280225

Design Principles for Solid-state Lithium Superionic Conductors

Overview
Journal Nat Mater
Date 2015 Aug 18
PMID 26280225
Citations 116
Authors
Affiliations
Soon will be listed here.
Abstract

Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today's lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li(+) conductivity in the solid state comparable to existing liquid electrolytes (>1 mS cm(-1)) is particularly challenging. In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the desirable structural attributes of good Li-ion conductors. We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors. These findings provide important insight towards the understanding of ionic transport in Li-ion conductors and serve as design principles for future discovery and design of improved electrolytes for Li-ion batteries.

Citing Articles

Superionic Ionic Conductor Discovery via Multiscale Topological Learning.

Chen D, Wang B, Li S, Zhang W, Yang K, Song Y Res Sq. 2025; .

PMID: 39975912 PMC: 11838764. DOI: 10.21203/rs.3.rs-5627791/v1.


Non-local interactions determine local structure and lithium diffusion in solid electrolytes.

Banerjee S, Tkatchenko A Nat Commun. 2025; 16(1):1672.

PMID: 39955292 PMC: 11830038. DOI: 10.1038/s41467-025-56662-8.


Controlling the All-Solid Surface Reaction Between an LiAlTi(PO) Electrolyte and Anode Through the Insertion of Ag and AlO Nano-Interfacial Layers.

Song G, Kim B, Hwang I, Kim J, Kim J, Yoon C Materials (Basel). 2025; 18(3).

PMID: 39942275 PMC: 11818407. DOI: 10.3390/ma18030609.


Recent Applications of Theoretical Calculations and Artificial Intelligence in Solid-State Electrolyte Research: A Review.

Wu M, Wei Z, Zhao Y, He Q Nanomaterials (Basel). 2025; 15(3).

PMID: 39940203 PMC: 11820664. DOI: 10.3390/nano15030225.


LiAlClS: a low-cost and high-performance solid electrolyte for solid-state batteries.

Poudel T, Oyekunle I, Deck M, Chen Y, Hou D, Ojha P Chem Sci. 2025; 16(5):2391-2401.

PMID: 39790986 PMC: 11707523. DOI: 10.1039/d4sc07151d.


References
1.
Murugan R, Thangadurai V, Weppner W . Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12). Angew Chem Int Ed Engl. 2007; 46(41):7778-81. DOI: 10.1002/anie.200701144. View

2.
Blochl . Projector augmented-wave method. Phys Rev B Condens Matter. 1994; 50(24):17953-17979. DOI: 10.1103/physrevb.50.17953. View

3.
Perdew , Burke , Ernzerhof . Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996; 77(18):3865-3868. DOI: 10.1103/PhysRevLett.77.3865. View

4.
Van der Ven A, Bhattacharya J, Belak A . Understanding Li diffusion in Li-intercalation compounds. Acc Chem Res. 2012; 46(5):1216-25. DOI: 10.1021/ar200329r. View

5.
Deiseroth H, Kong S, Eckert H, Vannahme J, Reiner C, Zaiss T . Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed Engl. 2007; 47(4):755-8. DOI: 10.1002/anie.200703900. View