» Articles » PMID: 32393363

Sampling Time-dependent Artifacts in Single-cell Genomics Studies

Abstract

Robust protocols and automation now enable large-scale single-cell RNA and ATAC sequencing experiments and their application on biobank and clinical cohorts. However, technical biases introduced during sample acquisition can hinder solid, reproducible results, and a systematic benchmarking is required before entering large-scale data production. Here, we report the existence and extent of gene expression and chromatin accessibility artifacts introduced during sampling and identify experimental and computational solutions for their prevention.

Citing Articles

Comparative evaluation of ACetic - MEthanol high salt dissociation approach for single-cell transcriptomics of frozen human tissues.

Utkina M, Shcherbakova A, Deviatiiarov R, Ryabova A, Loguinova M, Trofimov V Front Cell Dev Biol. 2025; 12():1469955.

PMID: 39839668 PMC: 11748064. DOI: 10.3389/fcell.2024.1469955.


Single-Cell Transcriptomics Sheds Light on Tumor Evolution: Perspectives from City of Hope's Clinical Trial Teams.

Cosgrove P, Bild A, Dellinger T, Badie B, Portnow J, Nath A J Clin Med. 2025; 13(24.

PMID: 39768430 PMC: 11677125. DOI: 10.3390/jcm13247507.


Considerations for building and using integrated single-cell atlases.

Hrovatin K, Sikkema L, Shitov V, Heimberg G, Shulman M, Oliver A Nat Methods. 2024; 22(1):41-57.

PMID: 39672979 DOI: 10.1038/s41592-024-02532-y.


Characterizing Fibroblast Heterogeneity in Diabetic Wounds Through Single-Cell RNA-Sequencing.

Wang H, Korah M, Jing S, Berry C, Griffin M, Longaker M Biomedicines. 2024; 12(11).

PMID: 39595104 PMC: 11592066. DOI: 10.3390/biomedicines12112538.


Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics.

Gulati G, DSilva J, Liu Y, Wang L, Newman A Nat Rev Mol Cell Biol. 2024; 26(1):11-31.

PMID: 39169166 DOI: 10.1038/s41580-024-00768-2.


References
1.
Regev A, Teichmann S, Lander E, Amit I, Benoist C, Birney E . The Human Cell Atlas. Elife. 2017; 6. PMC: 5762154. DOI: 10.7554/eLife.27041. View

2.
Buttner M, Miao Z, Wolf F, Teichmann S, Theis F . A test metric for assessing single-cell RNA-seq batch correction. Nat Methods. 2018; 16(1):43-49. DOI: 10.1038/s41592-018-0254-1. View

3.
Guillaumet-Adkins A, Rodriguez-Esteban G, Mereu E, Mendez-Lago M, Jaitin D, Villanueva A . Single-cell transcriptome conservation in cryopreserved cells and tissues. Genome Biol. 2017; 18(1):45. PMC: 5333448. DOI: 10.1186/s13059-017-1171-9. View

4.
Kiselev V, Kirschner K, Schaub M, Andrews T, Yiu A, Chandra T . SC3: consensus clustering of single-cell RNA-seq data. Nat Methods. 2017; 14(5):483-486. PMC: 5410170. DOI: 10.1038/nmeth.4236. View

5.
Denisenko E, Guo B, Jones M, Hou R, de Kock L, Lassmann T . Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 2020; 21(1):130. PMC: 7265231. DOI: 10.1186/s13059-020-02048-6. View