» Articles » PMID: 32358559

DIP/Dpr Interactions and the Evolutionary Design of Specificity in Protein Families

Overview
Journal Nat Commun
Specialty Biology
Date 2020 May 3
PMID 32358559
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Differential binding affinities among closely related protein family members underlie many biological phenomena, including cell-cell recognition. Drosophila DIP and Dpr proteins mediate neuronal targeting in the fly through highly specific protein-protein interactions. We show here that DIPs/Dprs segregate into seven specificity subgroups defined by binding preferences between their DIP and Dpr members. We then describe a sequence-, structure- and energy-based computational approach, combined with experimental binding affinity measurements, to reveal how specificity is coded on the canonical DIP/Dpr interface. We show that binding specificity of DIP/Dpr subgroups is controlled by "negative constraints", which interfere with binding. To achieve specificity, each subgroup utilizes a different combination of negative constraints, which are broadly distributed and cover the majority of the protein-protein interface. We discuss the structural origins of negative constraints, and potential general implications for the evolutionary origins of binding specificity in multi-protein families.

Citing Articles

Gradients of Recognition Molecules Shape Synaptic Specificity of Visuomotor Transformation.

Dombrovski M, Zang Y, Frighetto G, Vaccari A, Jang H, Mirshahidi P bioRxiv. 2025; .

PMID: 39974884 PMC: 11838220. DOI: 10.1101/2024.09.04.610846.


Following the Evolutionary Paths of Dscam1 Proteins toward Highly Specific Homophilic Interactions.

Wiseglass G, Rubinstein R Mol Biol Evol. 2024; 41(7).

PMID: 38989909 PMC: 11272049. DOI: 10.1093/molbev/msae141.


Robust Prediction of Relative Binding Energies for Protein-Protein Complex Mutations Using Free Energy Perturbation Calculations.

Sampson J, Cannon D, Duan J, Epstein J, Sergeeva A, Katsamba P J Mol Biol. 2024; 436(16):168640.

PMID: 38844044 PMC: 11339910. DOI: 10.1016/j.jmb.2024.168640.


Robust prediction of relative binding energies for protein-protein complex mutations using free energy perturbation calculations.

Sampson J, Cannon D, Duan J, Epstein J, Sergeeva A, Katsamba P bioRxiv. 2024; .

PMID: 38712280 PMC: 11071377. DOI: 10.1101/2024.04.22.590325.


hkb is required for DIP-α expression and target recognition in the Drosophila neuromuscular circuit.

Wang Y, Salazar R, Simonetta L, Sorrentino V, Gatton T, Wu B Commun Biol. 2024; 7(1):507.

PMID: 38678127 PMC: 11055905. DOI: 10.1038/s42003-024-06184-8.


References
1.
Zipursky S, Wojtowicz W, Hattori D . Got diversity? Wiring the fly brain with Dscam. Trends Biochem Sci. 2006; 31(10):581-8. DOI: 10.1016/j.tibs.2006.08.003. View

2.
Wojtowicz W, Wu W, Andre I, Qian B, Baker D, Zipursky S . A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell. 2007; 130(6):1134-45. PMC: 2707357. DOI: 10.1016/j.cell.2007.08.026. View

3.
Aye Thu C, Chen W, Rubinstein R, Chevee M, Wolcott H, Felsovalyi K . Single-cell identity generated by combinatorial homophilic interactions between α, β, and γ protocadherins. Cell. 2014; 158(5):1045-1059. PMC: 4183217. DOI: 10.1016/j.cell.2014.07.012. View

4.
Schreiner D, Weiner J . Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc Natl Acad Sci U S A. 2010; 107(33):14893-8. PMC: 2930437. DOI: 10.1073/pnas.1004526107. View

5.
Brasch J, Katsamba P, Harrison O, Ahlsen G, Troyanovsky R, Indra I . Homophilic and Heterophilic Interactions of Type II Cadherins Identify Specificity Groups Underlying Cell-Adhesive Behavior. Cell Rep. 2018; 23(6):1840-1852. PMC: 6029887. DOI: 10.1016/j.celrep.2018.04.012. View