» Articles » PMID: 32276492

Contribution of the Potassium Channels K1.3 and K3.1 to Smooth Muscle Cell Proliferation in Growing Collateral Arteries

Overview
Journal Cells
Publisher MDPI
Date 2020 Apr 12
PMID 32276492
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Collateral artery growth (arteriogenesis) involves the proliferation of vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Whereas the proliferation of ECs is directly related to shear stress, the driving force for arteriogenesis, little is known about the mechanisms of SMC proliferation. Here we investigated the functional relevance of the potassium channels K1.3 and K3.1 for SMC proliferation in arteriogenesis. Employing a murine hindlimb model of arteriogenesis, we found that blocking K1.3 with PAP-1 or K3.1. with TRAM-34, both interfered with reperfusion recovery after femoral artery ligation as shown by Laser-Doppler Imaging. However, only treatment with PAP-1 resulted in a reduced SMC proliferation. qRT-PCR results revealed an impaired downregulation of α smooth muscle-actin (αSM-actin) and a repressed expression of fibroblast growth factor receptor 1 () and platelet derived growth factor receptor b () in growing collaterals in vivo and in primary murine arterial SMCs in vitro under K1.3. blockade, but not when K3.1 was blocked. Moreover, treatment with PAP-1 impaired the mRNA expression of the cell cycle regulator early growth response-1 () in vivo and in vitro. Together, these data indicate that K1.3 but not K3.1 contributes to SMC proliferation in arteriogenesis.

Citing Articles

Clinical implications of inflammation in atheroma formation and novel therapies in cardiovascular diseases.

Barungi S, Hernandez-Camarero P, Moreno-Terribas G, Villalba-Montoro R, Marchal J, Lopez-Ruiz E Front Cell Dev Biol. 2023; 11:1148768.

PMID: 37009489 PMC: 10061140. DOI: 10.3389/fcell.2023.1148768.


Synthesis and biological evaluation of PET tracers designed for imaging of calcium activated potassium channel 3.1 (K3.1) channels .

Brommel K, Paul Konken C, Borgel F, Obeng-Darko H, Schelhaas S, Bulk E RSC Adv. 2022; 11(48):30295-30304.

PMID: 35480282 PMC: 9041111. DOI: 10.1039/d1ra03850h.


p38 MAPK priming boosts VSMC proliferation and arteriogenesis by promoting PGC1α-dependent mitochondrial dynamics.

Sahun-Espanol A, Clemente C, Jimenez-Loygorri J, Sierra-Filardi E, Herrera-Melle L, Gomez-Duran A Sci Rep. 2022; 12(1):5938.

PMID: 35396524 PMC: 8994030. DOI: 10.1038/s41598-022-09757-x.


Molecular Mechanisms Associated with ROS-Dependent Angiogenesis in Lower Extremity Artery Disease.

Hutchings G, Kruszyna L, Nawrocki M, Strauss E, Bryl R, Spaczynska J Antioxidants (Basel). 2021; 10(5).

PMID: 34066926 PMC: 8148529. DOI: 10.3390/antiox10050735.


The mechanism of ions in pulmonary hypertension.

Liu G, Fu D, Tian H, Dai A Pulm Circ. 2021; 11(1):2045894020987948.

PMID: 33614016 PMC: 7869166. DOI: 10.1177/2045894020987948.


References
1.
Deindl E, Hoefer I, Fernandez B, Barancik M, Heil M, Strniskova M . Involvement of the fibroblast growth factor system in adaptive and chemokine-induced arteriogenesis. Circ Res. 2003; 92(5):561-8. DOI: 10.1161/01.RES.0000061181.80065.7D. View

2.
Chen P, Simons M, Friesel R . FRS2 via fibroblast growth factor receptor 1 is required for platelet-derived growth factor receptor beta-mediated regulation of vascular smooth muscle marker gene expression. J Biol Chem. 2009; 284(23):15980-92. PMC: 2708892. DOI: 10.1074/jbc.M809399200. View

3.
Nilius B, Droogmans G, Wondergem R . Transient receptor potential channels in endothelium: solving the calcium entry puzzle?. Endothelium. 2003; 10(1):5-15. DOI: 10.1080/10623320303356. View

4.
Cidad P, Novensa L, Garabito M, Batlle M, Dantas A, Heras M . K+ channels expression in hypertension after arterial injury, and effect of selective Kv1.3 blockade with PAP-1 on intimal hyperplasia formation. Cardiovasc Drugs Ther. 2014; 28(6):501-11. DOI: 10.1007/s10557-014-6554-5. View

5.
van Weel V, Toes R, Seghers L, Deckers M, de Vries M, Eilers P . Natural killer cells and CD4+ T-cells modulate collateral artery development. Arterioscler Thromb Vasc Biol. 2007; 27(11):2310-8. DOI: 10.1161/ATVBAHA.107.151407. View