» Articles » PMID: 32253212

Pharmacokinetics-Pharmacodynamics of Enmetazobactam Combined with Cefepime in a Neutropenic Murine Thigh Infection Model

Overview
Specialty Pharmacology
Date 2020 Apr 8
PMID 32253212
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Third-generation cephalosporin (3GC)-resistant are classified as critical priority pathogens, with extended-spectrum β-lactamases (ESBLs) as principal resistance determinants. Enmetazobactam (formerly AAI101) is a novel ESBL inhibitor developed in combination with cefepime for empirical treatment of serious Gram-negative infections in settings where ESBLs are prevalent. Cefepime-enmetazobactam has been investigated in a phase 3 trial in patients with complicated urinary tract infections or acute pyelonephritis. This study examined pharmacokinetic-pharmacodynamic (PK-PD) relationships of enmetazobactam, in combination with cefepime, for ESBL-producing isolates of in 26-h murine neutropenic thigh infection models. Enmetazobactam dose fractionation identified the time above a free threshold concentration ( > ) as the PK-PD index predictive of efficacy. Nine ESBL-producing isolates of , resistant to cefepime and piperacillin-tazobactam, were included in enmetazobactam dose-ranging studies. The isolates encoded CTX-M-type, SHV-12, DHA-1, and OXA-48 β-lactamases and covered a cefepime-enmetazobactam MIC range from 0.06 to 2 μg/ml. Enmetazobactam restored the efficacy of cefepime against all isolates tested. Sigmoid curve fitting across the combined set of isolates identified enmetazobactam PK-PD targets for stasis and for a 1-log bioburden reduction of 8% and 44% > 2 μg/ml, respectively, with a concomitant cefepime PK-PD target of 40 to 60% > cefepime-enmetazobactam MIC. These findings support clinical dose selection and breakpoint setting for cefepime-enmetazobactam.

Citing Articles

efficacy of enmetazobactam combined with cefepime in a murine pneumonia model induced by OXA-48-producing .

Albac S, Anzala N, Chavanet P, Dunkel N, Quevedo J, Santerre Henriksen A Microbiol Spectr. 2024; :e0234524.

PMID: 39480156 PMC: 11619402. DOI: 10.1128/spectrum.02345-24.


Cefepime/Enmetazobactam: First Approval.

Keam S Drugs. 2024; 84(6):737-744.

PMID: 38761353 DOI: 10.1007/s40265-024-02035-2.


pharmacokinetics/pharmacodynamics of FL058 (a novel beta-lactamase inhibitor) combined with meropenem against carbapenemase-producing Enterobacterales.

Huang Z, Bian X, Li Y, Hu J, Guo B, Yang X Front Pharmacol. 2024; 15:1282480.

PMID: 38666023 PMC: 11043595. DOI: 10.3389/fphar.2024.1282480.


Novel Antimicrobial Agents for Gram-Negative Pathogens.

Karvouniaris M, Almyroudi M, Abdul-Aziz M, Blot S, Paramythiotou E, Tsigou E Antibiotics (Basel). 2023; 12(4).

PMID: 37107124 PMC: 10135111. DOI: 10.3390/antibiotics12040761.


Biochemical exploration of β-lactamase inhibitors.

Arer V, Kar D Front Genet. 2023; 13:1060736.

PMID: 36733944 PMC: 9888030. DOI: 10.3389/fgene.2022.1060736.


References
1.
Ambrose P, Bhavnani S, Jones R . Pharmacokinetics-pharmacodynamics of cefepime and piperacillin-tazobactam against Escherichia coli and Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases: report from the ARREST program. Antimicrob Agents Chemother. 2003; 47(5):1643-6. PMC: 153302. DOI: 10.1128/AAC.47.5.1643-1646.2003. View

2.
den Dunnen J, Dalgleish R, Maglott D, Hart R, Greenblatt M, McGowan-Jordan J . HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Hum Mutat. 2016; 37(6):564-9. DOI: 10.1002/humu.22981. View

3.
Lob S, Kazmierczak K, Badal R, Hackel M, Bouchillon S, Biedenbach D . Trends in susceptibility of Escherichia coli from intra-abdominal infections to ertapenem and comparators in the United States according to data from the SMART program, 2009 to 2013. Antimicrob Agents Chemother. 2015; 59(6):3606-10. PMC: 4432174. DOI: 10.1128/AAC.05186-14. View

4.
Sfeir M . Post-MERINO trial: Any role for piperacillin-tazobactam in treating bloodstream infections caused by extended-spectrum beta-lactamase producing Enterobacteriaceae?. Int J Antimicrob Agents. 2019; 53(5):557-558. DOI: 10.1016/j.ijantimicag.2019.03.007. View

5.
Trang M, Dudley M, Bhavnani S . Use of Monte Carlo simulation and considerations for PK-PD targets to support antibacterial dose selection. Curr Opin Pharmacol. 2017; 36:107-113. DOI: 10.1016/j.coph.2017.09.009. View