» Articles » PMID: 32245788

Detecting Shared Genetic Architecture Among Multiple Phenotypes by Hierarchical Clustering of Gene-Level Association Statistics

Overview
Journal Genetics
Specialty Genetics
Date 2020 Apr 5
PMID 32245788
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Emerging large-scale biobanks pairing genotype data with phenotype data present new opportunities to prioritize shared genetic associations across multiple phenotypes for molecular validation. Past research, by our group and others, has shown gene-level tests of association produce biologically interpretable characterization of the genetic architecture of a given phenotype. Here, we present a new method, Ward clustering to identify Internal Node branch length outliers using Gene Scores (WINGS), for identifying shared genetic architecture among phenotypes. The objective of WINGS is to identify groups of phenotypes, or "clusters," sharing a core set of genes enriched for mutations in cases. We validate WINGS using extensive simulation studies and then combine gene-level association tests with WINGS to identify shared genetic architecture among 81 case-control and seven quantitative phenotypes in 349,468 European-ancestry individuals from the UK Biobank. We identify eight prioritized phenotype clusters and recover multiple published gene-level associations within prioritized clusters.

Citing Articles

Integrating External Controls by Regression Calibration for Genome-Wide Association Study.

Zhu L, Yan S, Cao X, Zhang S, Sha Q Genes (Basel). 2024; 15(1).

PMID: 38254957 PMC: 10815702. DOI: 10.3390/genes15010067.


Spatiotemporal expression patterns of anxiety disorder-associated genes.

Karunakaran K, Amemori K Transl Psychiatry. 2023; 13(1):385.

PMID: 38092764 PMC: 10719387. DOI: 10.1038/s41398-023-02693-y.


A clustering linear combination method for multiple phenotype association studies based on GWAS summary statistics.

Wang M, Cao X, Zhang S, Sha Q Sci Rep. 2023; 13(1):3389.

PMID: 36854754 PMC: 9975197. DOI: 10.1038/s41598-023-30415-3.


HCLC-FC: A novel statistical method for phenome-wide association studies.

Liang X, Cao X, Sha Q, Zhang S PLoS One. 2022; 17(11):e0276646.

PMID: 36350801 PMC: 9645610. DOI: 10.1371/journal.pone.0276646.


Best practices for multi-ancestry, meta-analytic transcriptome-wide association studies: Lessons from the Global Biobank Meta-analysis Initiative.

Bhattacharya A, Hirbo J, Zhou D, Zhou W, Zheng J, Kanai M Cell Genom. 2022; 2(10).

PMID: 36341024 PMC: 9631681. DOI: 10.1016/j.xgen.2022.100180.


References
1.
Hormozdiari F, Kichaev G, Yang W, Pasaniuc B, Eskin E . Identification of causal genes for complex traits. Bioinformatics. 2015; 31(12):i206-13. PMC: 4542778. DOI: 10.1093/bioinformatics/btv240. View

2.
Jun G, Chung J, Mez J, Barber R, Beecham G, Bennett D . Transethnic genome-wide scan identifies novel Alzheimer's disease loci. Alzheimers Dement. 2017; 13(7):727-738. PMC: 5496797. DOI: 10.1016/j.jalz.2016.12.012. View

3.
Liu Y, Helms C, Liao W, Zaba L, Duan S, Gardner J . A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 2008; 4(3):e1000041. PMC: 2274885. DOI: 10.1371/journal.pgen.1000041. View

4.
Evangelou E, Warren H, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H . Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018; 50(10):1412-1425. PMC: 6284793. DOI: 10.1038/s41588-018-0205-x. View

5.
Wojcik G, Kao W, Duggal P . Relative performance of gene- and pathway-level methods as secondary analyses for genome-wide association studies. BMC Genet. 2015; 16:34. PMC: 4391470. DOI: 10.1186/s12863-015-0191-2. View