» Articles » PMID: 32216873

A Calibrated Optogenetic Toolbox of Stable Zebrafish Opsin Lines

Overview
Journal Elife
Specialty Biology
Date 2020 Mar 29
PMID 32216873
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Optogenetic actuators with diverse spectral tuning, ion selectivity and kinetics are constantly being engineered providing powerful tools for controlling neural activity with subcellular resolution and millisecond precision. Achieving reliable and interpretable in vivo optogenetic manipulations requires reproducible actuator expression and calibration of photocurrents in target neurons. Here, we developed nine transgenic zebrafish lines for stable opsin expression and calibrated their efficacy in vivo. We first used high-throughput behavioural assays to compare opsin ability to elicit or silence neural activity. Next, we performed in vivo whole-cell electrophysiological recordings to quantify the amplitude and kinetics of photocurrents and test opsin ability to precisely control spiking. We observed substantial variation in efficacy, associated with differences in both opsin expression level and photocurrent characteristics, and identified conditions for optimal use of the most efficient opsins. Overall, our calibrated optogenetic toolkit will facilitate the design of controlled optogenetic circuit manipulations.

Citing Articles

Optogenetic interrogation of the lateral-line sensory system reveals mechanisms of pattern separation in the zebrafish brain.

Velez-Angel N, Lu S, Fabella B, Reagor C, Brown H, Vazquez Y bioRxiv. 2025; .

PMID: 39975109 PMC: 11839093. DOI: 10.1101/2025.02.07.637118.


Transsynaptic labeling and transcriptional control of zebrafish neural circuits.

Coomer C, Naumova D, Talay M, Zolyomi B, Snell N, Sorkac A Nat Neurosci. 2024; 28(1):189-200.

PMID: 39702668 DOI: 10.1038/s41593-024-01815-z.


Ketamine induces plasticity in a norepinephrine-astroglial circuit to promote behavioral perseverance.

Duque M, Chen A, Hsu E, Narayan S, Rymbek A, Begum S Neuron. 2024; 113(3):426-443.e5.

PMID: 39694033 PMC: 11889991. DOI: 10.1016/j.neuron.2024.11.011.


Two-photon all-optical neurophysiology for the dissection of larval zebrafish brain functional and effective connectivity.

Turrini L, Ricci P, Sorelli M, De Vito G, Marchetti M, Vanzi F Commun Biol. 2024; 7(1):1261.

PMID: 39367042 PMC: 11452506. DOI: 10.1038/s42003-024-06731-3.


Neuropeptidergic regulation of neuromuscular signaling in larval zebrafish alters swimming behavior and synaptic transmission.

Dill H, Liewald J, Becker M, Seidenthal M, Gottschalk A iScience. 2024; 27(9):110687.

PMID: 39252958 PMC: 11381845. DOI: 10.1016/j.isci.2024.110687.


References
1.
Berndt A, Lee S, Wietek J, Ramakrishnan C, Steinberg E, Rashid A . Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity. Proc Natl Acad Sci U S A. 2015; 113(4):822-9. PMC: 4743797. DOI: 10.1073/pnas.1523341113. View

2.
Asakawa K, Kawakami K . Targeted gene expression by the Gal4-UAS system in zebrafish. Dev Growth Differ. 2008; 50(6):391-9. DOI: 10.1111/j.1440-169X.2008.01044.x. View

3.
Klapoetke N, Murata Y, Kim S, Pulver S, Birdsey-Benson A, Cho Y . Independent optical excitation of distinct neural populations. Nat Methods. 2014; 11(3):338-46. PMC: 3943671. DOI: 10.1038/nmeth.2836. View

4.
Bello-Rojas S, Istrate A, Kishore S, McLean D . Central and peripheral innervation patterns of defined axial motor units in larval zebrafish. J Comp Neurol. 2019; 527(15):2557-2572. PMC: 6688944. DOI: 10.1002/cne.24689. View

5.
Suster M, Abe G, Schouw A, Kawakami K . Transposon-mediated BAC transgenesis in zebrafish. Nat Protoc. 2011; 6(12):1998-2021. DOI: 10.1038/nprot.2011.416. View