» Articles » PMID: 26113638

NEUROSCIENCE. Natural Light-gated Anion Channels: A Family of Microbial Rhodopsins for Advanced Optogenetics

Overview
Journal Science
Specialty Science
Date 2015 Jun 27
PMID 26113638
Citations 294
Authors
Affiliations
Soon will be listed here.
Abstract

Light-gated rhodopsin cation channels from chlorophyte algae have transformed neuroscience research through their use as membrane-depolarizing optogenetic tools for targeted photoactivation of neuron firing. Photosuppression of neuronal action potentials has been limited by the lack of equally efficient tools for membrane hyperpolarization. We describe anion channel rhodopsins (ACRs), a family of light-gated anion channels from cryptophyte algae that provide highly sensitive and efficient membrane hyperpolarization and neuronal silencing through light-gated chloride conduction. ACRs strictly conducted anions, completely excluding protons and larger cations, and hyperpolarized the membrane of cultured animal cells with much faster kinetics at less than one-thousandth of the light intensity required by the most efficient currently available optogenetic proteins. Natural ACRs provide optogenetic inhibition tools with unprecedented light sensitivity and temporal precision.

Citing Articles

Optogenetics and chemogenetics: key tools for modulating neural circuits in rodent models of depression.

Li S, Zhang J, Li J, Hu Y, Zhang M, Wang H Front Neural Circuits. 2025; 19:1516839.

PMID: 40070557 PMC: 11893610. DOI: 10.3389/fncir.2025.1516839.


An opponent striatal circuit for distributional reinforcement learning.

Lowet A, Zheng Q, Meng M, Matias S, Drugowitsch J, Uchida N Nature. 2025; .

PMID: 39972123 DOI: 10.1038/s41586-024-08488-5.


Structural insights into light-gating of potassium-selective channelrhodopsin.

Morizumi T, Kim K, Li H, Nag P, Dogon T, Sineshchekov O Nat Commun. 2025; 16(1):1283.

PMID: 39900567 PMC: 11790859. DOI: 10.1038/s41467-025-56491-9.


Suppression of epileptic seizures by transcranial activation of K-selective channelrhodopsin.

Duan X, Zhang C, Wu Y, Ju J, Xu Z, Li X Nat Commun. 2025; 16(1):559.

PMID: 39789018 PMC: 11718177. DOI: 10.1038/s41467-025-55818-w.


Structural Insights Into the Opening Mechanism of C1C2 Channelrhodopsin.

Mulder M, Hwang S, Broser M, Brunle S, Skopintsev P, Schattenberg C J Am Chem Soc. 2024; 147(1):1282-1290.

PMID: 39680650 PMC: 11726564. DOI: 10.1021/jacs.4c15402.


References
1.
Zhang F, Wang L, Brauner M, Liewald J, Kay K, Watzke N . Multimodal fast optical interrogation of neural circuitry. Nature. 2007; 446(7136):633-9. DOI: 10.1038/nature05744. View

2.
Deisseroth K . Optogenetics. Nat Methods. 2010; 8(1):26-9. PMC: 6814250. DOI: 10.1038/nmeth.f.324. View

3.
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P . Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003; 100(24):13940-5. PMC: 283525. DOI: 10.1073/pnas.1936192100. View

4.
Sineshchekov O, Govorunova E, Jung K, Zauner S, Maier U, Spudich J . Rhodopsin-mediated photoreception in cryptophyte flagellates. Biophys J. 2005; 89(6):4310-9. PMC: 1366995. DOI: 10.1529/biophysj.105.070920. View

5.
Lin J, Knutsen P, Muller A, Kleinfeld D, Tsien R . ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci. 2013; 16(10):1499-508. PMC: 3793847. DOI: 10.1038/nn.3502. View