» Articles » PMID: 32205861

CAR T-cells That Target Acute B-lineage Leukemia Irrespective of CD19 Expression

Abstract

Chimeric antigen receptor (CAR) T-cells targeting CD19 demonstrate remarkable efficacy in treating B-lineage acute lymphoblastic leukemia (BL-ALL), yet up to 39% of treated patients relapse with CD19(-) disease. We report that CD19(-) escape is associated with downregulation, but preservation, of targetable expression of CD20 and CD22. Accordingly, we reasoned that broadening the spectrum of CD19CAR T-cells to include both CD20 and CD22 would enable them to target CD19(-) escape BL-ALL while preserving their upfront efficacy. We created a CD19/20/22-targeting CAR T-cell by coexpressing individual CAR molecules on a single T-cell using one tricistronic transgene. CD19/20/22CAR T-cells killed CD19(-) blasts from patients who relapsed after CD19CAR T-cell therapy and CRISPR/Cas9 CD19 knockout primary BL-ALL both in vitro and in an animal model, while CD19CAR T-cells were ineffective. At the subcellular level, CD19/20/22CAR T-cells formed dense immune synapses with target cells that mediated effective cytolytic complex formation, were efficient serial killers in single-cell tracking studies, and were as efficacious as CD19CAR T-cells against primary CD19(+) disease. In conclusion, independent of CD19 expression, CD19/20/22CAR T-cells could be used as salvage or front-line CAR therapy for patients with recalcitrant disease.

Citing Articles

Strategies to Overcome Antigen Heterogeneity in CAR-T Cell Therapy.

Zhang B, Wu J, Jiang H, Zhou M Cells. 2025; 14(5).

PMID: 40072049 PMC: 11899321. DOI: 10.3390/cells14050320.


Molecular dynamics at immune synapse lipid rafts influence the cytolytic behavior of CAR T cells.

Gad A, Morris J, Godret-Miertschin L, Montalvo M, Kerr S, Berger H Sci Adv. 2025; 11(2):eadq8114.

PMID: 39792660 PMC: 11721525. DOI: 10.1126/sciadv.adq8114.


Design of a Water-Soluble CD20 Antigen with Computational Epitope Scaffolding.

Yao Z, Kuhlman B bioRxiv. 2024; .

PMID: 39677710 PMC: 11643043. DOI: 10.1101/2024.12.05.627087.


Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy.

Mohammad Taheri M, Javan F, Poudineh M, Athari S J Transl Med. 2024; 22(1):736.

PMID: 39103889 PMC: 11302387. DOI: 10.1186/s12967-024-05534-8.


Synthetic Cells and Molecules in Cellular Immunotherapy.

Lin H, Li C, Zhang W, Wu B, Wang Y, Wang S Int J Biol Sci. 2024; 20(8):2833-2859.

PMID: 38904025 PMC: 11186374. DOI: 10.7150/ijbs.94346.


References
1.
Davila M, Riviere I, Wang X, Bartido S, Park J, Curran K . Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014; 6(224):224ra25. PMC: 4684949. DOI: 10.1126/scitranslmed.3008226. View

2.
Grupp S, Kalos M, Barrett D, Aplenc R, Porter D, Rheingold S . Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013; 368(16):1509-1518. PMC: 4058440. DOI: 10.1056/NEJMoa1215134. View

3.
Lee D, Kochenderfer J, Stetler-Stevenson M, Cui Y, Delbrook C, Feldman S . T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2014; 385(9967):517-528. PMC: 7065359. DOI: 10.1016/S0140-6736(14)61403-3. View

4.
Maude S, Frey N, Shaw P, Aplenc R, Barrett D, Bunin N . Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014; 371(16):1507-17. PMC: 4267531. DOI: 10.1056/NEJMoa1407222. View

5.
Turtle C, Hanafi L, Berger C, Gooley T, Cherian S, Hudecek M . CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016; 126(6):2123-38. PMC: 4887159. DOI: 10.1172/JCI85309. View