» Articles » PMID: 32203499

Recurrent Architecture for Adaptive Regulation of Learning in the Insect Brain

Abstract

Dopaminergic neurons (DANs) drive learning across the animal kingdom, but the upstream circuits that regulate their activity and thereby learning remain poorly understood. We provide a synaptic-resolution connectome of the circuitry upstream of all DANs in a learning center, the mushroom body of Drosophila larva. We discover afferent sensory pathways and a large population of neurons that provide feedback from mushroom body output neurons and link distinct memory systems (aversive and appetitive). We combine this with functional studies of DANs and their presynaptic partners and with comprehensive circuit modeling. We find that DANs compare convergent feedback from aversive and appetitive systems, which enables the computation of integrated predictions that may improve future learning. Computational modeling reveals that the discovered feedback motifs increase model flexibility and performance on learning tasks. Our study provides the most detailed view to date of biological circuit motifs that support associative learning.

Citing Articles

Driver lines for studying associative learning in .

Shuai Y, Sammons M, Sterne G, Hibbard K, Yang H, Yang C Elife. 2025; 13.

PMID: 39879130 PMC: 11778931. DOI: 10.7554/eLife.94168.


A Vulnerable Subtype of Dopaminergic Neurons Drives Early Motor Deficits in Parkinson's Disease.

Fushiki A, Ng D, Lewis Z, Yadav A, Saraiva T, Hammond L bioRxiv. 2025; .

PMID: 39763754 PMC: 11702755. DOI: 10.1101/2024.12.20.629776.


Predicting visual function by interpreting a neuronal wiring diagram.

Seung H Nature. 2024; 634(8032):113-123.

PMID: 39358524 PMC: 11446822. DOI: 10.1038/s41586-024-07953-5.


Reinforcement learning as a robotics-inspired framework for insect navigation: from spatial representations to neural implementation.

Lochner S, Honerkamp D, Valada A, Straw A Front Comput Neurosci. 2024; 18:1460006.

PMID: 39314666 PMC: 11416953. DOI: 10.3389/fncom.2024.1460006.


Hierarchical communities in the larval connectome: Links to cellular annotations and network topology.

Betzel R, Puxeddu M, Seguin C Proc Natl Acad Sci U S A. 2024; 121(38):e2320177121.

PMID: 39269775 PMC: 11420166. DOI: 10.1073/pnas.2320177121.


References
1.
Watabe-Uchida M, Eshel N, Uchida N . Neural Circuitry of Reward Prediction Error. Annu Rev Neurosci. 2017; 40:373-394. PMC: 6721851. DOI: 10.1146/annurev-neuro-072116-031109. View

2.
Eschbach C, Cano C, Haberkern H, Schraut K, Guan C, Triphan T . Associative learning between odorants and mechanosensory punishment in larval Drosophila. J Exp Biol. 2011; 214(Pt 23):3897-905. DOI: 10.1242/jeb.060533. View

3.
Dunsmoor J, Niv Y, Daw N, Phelps E . Rethinking Extinction. Neuron. 2015; 88(1):47-63. PMC: 4598943. DOI: 10.1016/j.neuron.2015.09.028. View

4.
Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M . TrakEM2 software for neural circuit reconstruction. PLoS One. 2012; 7(6):e38011. PMC: 3378562. DOI: 10.1371/journal.pone.0038011. View

5.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T . Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9(7):676-82. PMC: 3855844. DOI: 10.1038/nmeth.2019. View