» Articles » PMID: 32202497

Cross-species Cortical Alignment Identifies Different Types of Anatomical Reorganization in the Primate Temporal Lobe

Overview
Journal Elife
Specialty Biology
Date 2020 Mar 24
PMID 32202497
Citations 45
Authors
Affiliations
Soon will be listed here.
Abstract

Evolutionary adaptations of temporo-parietal cortex are considered to be a critical specialization of the human brain. Cortical adaptations, however, can affect different aspects of brain architecture, including local expansion of the cortical sheet or changes in connectivity between cortical areas. We distinguish different types of changes in brain architecture using a computational neuroanatomy approach. We investigate the extent to which between-species alignment, based on cortical myelin, can predict changes in connectivity patterns across macaque, chimpanzee, and human. We show that expansion and relocation of brain areas can predict terminations of several white matter tracts in temporo-parietal cortex, including the middle and superior longitudinal fasciculus, but not the arcuate fasciculus. This demonstrates that the arcuate fasciculus underwent additional evolutionary modifications affecting the temporal lobe connectivity pattern. This approach can flexibly be extended to include other features of cortical organization and other species, allowing direct tests of comparative hypotheses of brain organization.

Citing Articles

Benchmarking macaque brain gene expression for horizontal and vertical translation.

Luppi A, Liu Z, Hansen J, Cofre R, Niu M, Kuzmin E Sci Adv. 2025; 11(9):eads6967.

PMID: 40020056 PMC: 11870082. DOI: 10.1126/sciadv.ads6967.


The Chimpanzee Brainnetome Atlas reveals distinct connectivity and gene expression profiles relative to humans.

Wang Y, Cheng L, Li D, Lu Y, Wang C, Wang Y Innovation (Camb). 2025; 6(2):100755.

PMID: 39991479 PMC: 11846036. DOI: 10.1016/j.xinn.2024.100755.


Brain areas for reversible symbolic reference, a potential singularity of the human brain.

van Kerkoerle T, Pape L, Ekramnia M, Feng X, Tasserie J, Dupont M Elife. 2025; 12.

PMID: 39937096 PMC: 11820117. DOI: 10.7554/eLife.87380.


Enlargement of the human prefrontal cortex and brain mentalizing network: anatomically homogenous cross-species brain transformation.

Amano H, Tanabe H, Ogihara N Brain Struct Funct. 2025; 230(2):34.

PMID: 39853417 PMC: 11762074. DOI: 10.1007/s00429-025-02896-7.


Molecular signatures of cortical expansion in the human foetal brain.

Ball G, Oldham S, Kyriakopoulou V, Williams L, Karolis V, Price A Nat Commun. 2024; 15(1):9685.

PMID: 39516464 PMC: 11549424. DOI: 10.1038/s41467-024-54034-2.


References
1.
Glasser M, Goyal M, Preuss T, Raichle M, Van Essen D . Trends and properties of human cerebral cortex: correlations with cortical myelin content. Neuroimage. 2013; 93 Pt 2:165-75. PMC: 3795824. DOI: 10.1016/j.neuroimage.2013.03.060. View

2.
Donahue C, Sotiropoulos S, Jbabdi S, Hernandez-Fernandez M, Behrens T, Dyrby T . Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey. J Neurosci. 2016; 36(25):6758-70. PMC: 4916250. DOI: 10.1523/JNEUROSCI.0493-16.2016. View

3.
Ruschel M, Knosche T, Friederici A, Turner R, Geyer S, Anwander A . Connectivity architecture and subdivision of the human inferior parietal cortex revealed by diffusion MRI. Cereb Cortex. 2013; 24(9):2436-48. DOI: 10.1093/cercor/bht098. View

4.
Glasser M, Van Essen D . Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci. 2011; 31(32):11597-616. PMC: 3167149. DOI: 10.1523/JNEUROSCI.2180-11.2011. View

5.
Makris N, Papadimitriou G, Kaiser J, Sorg S, Kennedy D, Pandya D . Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex. 2008; 19(4):777-85. PMC: 2651473. DOI: 10.1093/cercor/bhn124. View