» Articles » PMID: 32150537

Parallel Tempering with Lasso for Model Reduction in Systems Biology

Overview
Specialty Biology
Date 2020 Mar 10
PMID 32150537
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Systems Biology models reveal relationships between signaling inputs and observable molecular or cellular behaviors. The complexity of these models, however, often obscures key elements that regulate emergent properties. We use a Bayesian model reduction approach that combines Parallel Tempering with Lasso regularization to identify minimal subsets of reactions in a signaling network that are sufficient to reproduce experimentally observed data. The Bayesian approach finds distinct reduced models that fit data equivalently. A variant of this approach that uses Lasso to perform selection at the level of reaction modules is applied to the NF-κB signaling network to test the necessity of feedback loops for responses to pulsatile and continuous pathway stimulation. Taken together, our results demonstrate that Bayesian parameter estimation combined with regularization can isolate and reveal core motifs sufficient to explain data from complex signaling systems.

Citing Articles

A two-step framework integrating lasso and Relaxed Lasso for resolving multidimensional collinearity in Chinese baijiu aging research.

An D, Wang L, He J, Hua Y Heliyon. 2024; 10(17):e36871.

PMID: 39281622 PMC: 11399590. DOI: 10.1016/j.heliyon.2024.e36871.


Bayesian Mechanistic Inference, Statistical Mechanics, and a New Era for Monte Carlo.

Zuckerman D, George A J Chem Theory Comput. 2024; 20(8):2971-2984.

PMID: 38603773 PMC: 11089648. DOI: 10.1021/acs.jctc.4c00014.


Monte Carlo samplers for efficient network inference.

Kilic Z, Schweiger M, Moyer C, Presse S PLoS Comput Biol. 2023; 19(7):e1011256.

PMID: 37463156 PMC: 10353823. DOI: 10.1371/journal.pcbi.1011256.


A plausible identifiable model of the canonical NF-κB signaling pathway.

Jaruszewicz-Blonska J, Kosiuk I, Prus W, Lipniacki T PLoS One. 2023; 18(6):e0286416.

PMID: 37267242 PMC: 10237389. DOI: 10.1371/journal.pone.0286416.


Identification and validation of endocrine resistance-related and immune-related long non-coding RNA (lncRNA) signatures for predicting endocrinotherapy response and prognosis in breast cancer.

Yang M, Sun Y, Ji H, Zhang Q Ann Transl Med. 2023; 10(24):1399.

PMID: 36660659 PMC: 9843421. DOI: 10.21037/atm-22-6158.


References
1.
Karr J, Sanghvi J, Macklin D, Gutschow M, Jacobs J, Bolival Jr B . A whole-cell computational model predicts phenotype from genotype. Cell. 2012; 150(2):389-401. PMC: 3413483. DOI: 10.1016/j.cell.2012.05.044. View

2.
Harris L, Hogg J, Tapia J, Sekar J, Gupta S, Korsunsky I . BioNetGen 2.2: advances in rule-based modeling. Bioinformatics. 2016; 32(21):3366-3368. PMC: 5079481. DOI: 10.1093/bioinformatics/btw469. View

3.
Chylek L, Holowka D, Baird B, Hlavacek W . An Interaction Library for the FcεRI Signaling Network. Front Immunol. 2014; 5:172. PMC: 3995055. DOI: 10.3389/fimmu.2014.00172. View

4.
Ciliberto A, Capuani F, Tyson J . Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. PLoS Comput Biol. 2007; 3(3):e45. PMC: 1828705. DOI: 10.1371/journal.pcbi.0030045. View

5.
Eydgahi H, Chen W, Muhlich J, Vitkup D, Tsitsiklis J, Sorger P . Properties of cell death models calibrated and compared using Bayesian approaches. Mol Syst Biol. 2013; 9:644. PMC: 3588908. DOI: 10.1038/msb.2012.69. View