» Articles » PMID: 16686963

The Inferelator: an Algorithm for Learning Parsimonious Regulatory Networks from Systems-biology Data Sets De Novo

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2006 May 12
PMID 16686963
Citations 253
Authors
Affiliations
Soon will be listed here.
Abstract

We present a method (the Inferelator) for deriving genome-wide transcriptional regulatory interactions, and apply the method to predict a large portion of the regulatory network of the archaeon Halobacterium NRC-1. The Inferelator uses regression and variable selection to identify transcriptional influences on genes based on the integration of genome annotation and expression data. The learned network successfully predicted Halobacterium's global expression under novel perturbations with predictive power similar to that seen over training data. Several specific regulatory predictions were experimentally tested and verified.

Citing Articles

Approaches for Benchmarking Single-Cell Gene Regulatory Network Methods.

Karamveer , Uzun Y Bioinform Biol Insights. 2024; 18:11779322241287120.

PMID: 39502448 PMC: 11536393. DOI: 10.1177/11779322241287120.


A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data.

Loers J, Vermeirssen V Brief Bioinform. 2024; 25(5).

PMID: 39207727 PMC: 11359808. DOI: 10.1093/bib/bbae382.


Current and future directions in network biology.

Zitnik M, Li M, Wells A, Glass K, Morselli Gysi D, Krishnan A Bioinform Adv. 2024; 4(1):vbae099.

PMID: 39143982 PMC: 11321866. DOI: 10.1093/bioadv/vbae099.


Network depth affects inference of gene sets from bacterial transcriptomes using denoising autoencoders.

Kion-Crosby W, Barquist L Bioinform Adv. 2024; 4(1):vbae066.

PMID: 39027639 PMC: 11256956. DOI: 10.1093/bioadv/vbae066.


Reverse network diffusion to remove indirect noise for better inference of gene regulatory networks.

Yu J, Leng J, Yuan F, Sun D, Wu L Bioinformatics. 2024; 40(7).

PMID: 38963312 PMC: 11236096. DOI: 10.1093/bioinformatics/btae435.


References
1.
de Jong H . Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002; 9(1):67-103. DOI: 10.1089/10665270252833208. View

2.
Baliga N, Pan M, Goo Y, Yi E, Goodlett D, Dimitrov K . Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach. Proc Natl Acad Sci U S A. 2002; 99(23):14913-8. PMC: 137519. DOI: 10.1073/pnas.192558999. View

3.
Ideker T, Thorsson V, Siegel A, HOOD L . Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data. J Comput Biol. 2001; 7(6):805-17. DOI: 10.1089/10665270050514945. View

4.
Friedman N, Linial M, Nachman I, Peer D . Using Bayesian networks to analyze expression data. J Comput Biol. 2000; 7(3-4):601-20. DOI: 10.1089/106652700750050961. View

5.
Ettema T, Huynen M, de Vos W, van der Oost J . TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. Trends Biochem Sci. 2003; 28(4):170-3. DOI: 10.1016/S0968-0004(03)00037-9. View