» Articles » PMID: 32053104

Mechanisms of Chromosome Biorientation and Bipolar Spindle Assembly Analyzed by Computational Modeling

Overview
Journal Elife
Specialty Biology
Date 2020 Feb 14
PMID 32053104
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

The essential functions required for mitotic spindle assembly and chromosome biorientation and segregation are not fully understood, despite extensive study. To illuminate the combinations of ingredients most important to align and segregate chromosomes and simultaneously assemble a bipolar spindle, we developed a computational model of fission-yeast mitosis. Robust chromosome biorientation requires progressive restriction of attachment geometry, destabilization of misaligned attachments, and attachment force dependence. Large spindle length fluctuations can occur when the kinetochore-microtubule attachment lifetime is long. The primary spindle force generators are kinesin-5 motors and crosslinkers in early mitosis, while interkinetochore stretch becomes important after biorientation. The same mechanisms that contribute to persistent biorientation lead to segregation of chromosomes to the poles after anaphase onset. This model therefore provides a framework to interrogate key requirements for robust chromosome biorientation, spindle length regulation, and force generation in the spindle.

Citing Articles

Kinesin-5/Cut7 C-terminal tail phosphorylation is essential for microtubule sliding force and bipolar mitotic spindle assembly.

Jones M, Gergely Z, Steckhahn D, Zhou B, Betterton M Curr Biol. 2024; 34(20):4781-4793.e6.

PMID: 39413787 PMC: 11550858. DOI: 10.1016/j.cub.2024.08.035.


Unveiling inter-embryo variability in spindle length over time: Towards quantitative phenotype analysis.

Le Cunff Y, Chesneau L, Pastezeur S, Pinson X, Soler N, Fairbrass D PLoS Comput Biol. 2024; 20(9):e1012330.

PMID: 39236069 PMC: 11376571. DOI: 10.1371/journal.pcbi.1012330.


Measuring and modeling the dynamics of mitotic error correction.

Ha G, Dieterle P, Shen H, Amir A, Needleman D Proc Natl Acad Sci U S A. 2024; 121(25):e2323009121.

PMID: 38875144 PMC: 11194551. DOI: 10.1073/pnas.2323009121.


CKAP5 stabilizes CENP-E at kinetochores by regulating microtubule-chromosome attachments.

Lakshmi R, Nayak P, Raz L, Sarkar A, Saroha A, Kumari P EMBO Rep. 2024; 25(4):1909-1935.

PMID: 38424231 PMC: 11014917. DOI: 10.1038/s44319-024-00106-9.


Distinct regions of the kinesin-5 C-terminal tail are essential for mitotic spindle midzone localization and sliding force.

Gergely Z, Jones M, Zhou B, Cash C, McIntosh J, Betterton M Proc Natl Acad Sci U S A. 2023; 120(39):e2306480120.

PMID: 37725645 PMC: 10523502. DOI: 10.1073/pnas.2306480120.


References
1.
Bouck D, Bloom K . Pericentric chromatin is an elastic component of the mitotic spindle. Curr Biol. 2007; 17(9):741-8. PMC: 1937037. DOI: 10.1016/j.cub.2007.03.033. View

2.
Gluncic M, Maghelli N, Krull A, Krstic V, Ramunno-Johnson D, Pavin N . Kinesin-8 motors improve nuclear centering by promoting microtubule catastrophe. Phys Rev Lett. 2015; 114(7):078103. DOI: 10.1103/PhysRevLett.114.078103. View

3.
Kawaguchi K, Ishiwata S . Nucleotide-dependent single- to double-headed binding of kinesin. Science. 2001; 291(5504):667-9. DOI: 10.1126/science.291.5504.667. View

4.
Lacroix B, Letort G, Pitayu L, Salle J, Stefanutti M, Maton G . Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing. Dev Cell. 2018; 45(4):496-511.e6. PMC: 6360954. DOI: 10.1016/j.devcel.2018.04.022. View

5.
Wollman R, Civelekoglu-Scholey G, Scholey J, Mogilner A . Reverse engineering of force integration during mitosis in the Drosophila embryo. Mol Syst Biol. 2008; 4:195. PMC: 2424291. DOI: 10.1038/msb.2008.23. View