» Articles » PMID: 32042200

Development of a Covalent Inhibitor of Gut Bacterial Bile Salt Hydrolases

Abstract

Bile salt hydrolase (BSH) enzymes are widely expressed by human gut bacteria and catalyze the gateway reaction leading to secondary bile acid formation. Bile acids regulate key metabolic and immune processes by binding to host receptors. There is an unmet need for a potent tool to inhibit BSHs across all gut bacteria to study the effects of bile acids on host physiology. Here, we report the development of a covalent pan-inhibitor of gut bacterial BSHs. From a rationally designed candidate library, we identified a lead compound bearing an alpha-fluoromethyl ketone warhead that modifies BSH at the catalytic cysteine residue. This inhibitor abolished BSH activity in conventional mouse feces. Mice gavaged with a single dose of this compound displayed decreased BSH activity and decreased deconjugated bile acid levels in feces. Our studies demonstrate the potential of a covalent BSH inhibitor to modulate bile acid composition in vivo.

Citing Articles

New insights into microbial bile salt hydrolases: from physiological roles to potential applications.

Dong Z, Yang S, Tang C, Li D, Kan Y, Yao L Front Microbiol. 2025; 16:1513541.

PMID: 40012771 PMC: 11860951. DOI: 10.3389/fmicb.2025.1513541.


Gut Bacteria Encode Reductases that Biotransform Steroid Hormones.

Arp G, Jiang A, Dufault-Thompson K, Levy S, Zhong A, Wassan J bioRxiv. 2025; .

PMID: 39803498 PMC: 11722256. DOI: 10.1101/2024.10.04.616736.


A Small-Molecule Inhibitor of Gut Bacterial Urease Protects the Host from Liver Injury.

Richards-Corke K, Jiang Y, Yeliseyev V, Zhang Y, Franzosa E, Wang Z ACS Chem Biol. 2025; 20(1):48-55.

PMID: 39778875 PMC: 11744669. DOI: 10.1021/acschembio.3c00556.


Gut protects against fat deposition by enhancing secondary bile acid biosynthesis.

Zha A, Qi M, Deng Y, Li H, Wang N, Wang C Imeta. 2025; 3(6):e261.

PMID: 39742294 PMC: 11683477. DOI: 10.1002/imt2.261.


The Roles of Gut Microbiota Metabolites in the Occurrence and Development of Colorectal Cancer: Multiple Insights for Potential Clinical Applications.

Cheng W, Li F, Yang R Gastro Hep Adv. 2024; 3(6):855-870.

PMID: 39280926 PMC: 11401567. DOI: 10.1016/j.gastha.2024.05.012.


References
1.
Ridlon J, Kang D, Hylemon P . Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2005; 47(2):241-59. DOI: 10.1194/jlr.R500013-JLR200. View

2.
Fiorucci S, Distrutti E . Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders. Trends Mol Med. 2015; 21(11):702-714. DOI: 10.1016/j.molmed.2015.09.001. View

3.
Setchell K, Lawson A, Tanida N, Sjovall J . General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J Lipid Res. 1983; 24(8):1085-100. View

4.
Hamilton J, Xie G, Raufman J, Hogan S, Griffin T, Packard C . Human cecal bile acids: concentration and spectrum. Am J Physiol Gastrointest Liver Physiol. 2007; 293(1):G256-63. DOI: 10.1152/ajpgi.00027.2007. View

5.
Modica S, Gadaleta R, Moschetta A . Deciphering the nuclear bile acid receptor FXR paradigm. Nucl Recept Signal. 2011; 8:e005. PMC: 3049226. DOI: 10.1621/nrs.08005. View