» Articles » PMID: 32023475

Single-Cell Transcriptomic Comparison of Human Fetal Retina, HPSC-Derived Retinal Organoids, and Long-Term Retinal Cultures

Abstract

To study the development of the human retina, we use single-cell RNA sequencing (RNA-seq) at key fetal stages and follow the development of the major cell types as well as populations of transitional cells. We also analyze stem cell (hPSC)-derived retinal organoids; although organoids have a very similar cellular composition at equivalent ages as the fetal retina, there are some differences in gene expression of particular cell types. Moreover, the inner retinal lamination is disrupted at more advanced stages of organoids compared with fetal retina. To determine whether the disorganization in the inner retina is due to the culture conditions, we analyze retinal development in fetal retina maintained under similar conditions. These retinospheres develop for at least 6 months, displaying better inner retinal lamination than retinal organoids. Our single-cell RNA sequencing (scRNA-seq) comparisons of fetal retina, retinal organoids, and retinospheres provide a resource for developing better in vitro models for retinal disease.

Citing Articles

Spatiotemporally resolved transcriptomics reveals the cellular dynamics of human retinal development.

Zhang J, Wang J, Zhou Q, Chen Z, Zhuang J, Zhao X Nat Commun. 2025; 16(1):2307.

PMID: 40055379 PMC: 11889126. DOI: 10.1038/s41467-025-57625-9.


Unravelling genotype-phenotype correlations in Stargardt disease using patient-derived retinal organoids.

Watson A, Queen R, Ferrandez-Peral L, Dorgau B, Collin J, Nelson A Cell Death Dis. 2025; 16(1):108.

PMID: 39971915 PMC: 11840025. DOI: 10.1038/s41419-025-07420-7.


Stimulating the regenerative capacity of the human retina with proneural transcription factors in 3D cultures.

Wohlschlegel J, Kierney F, Arakelian K, Luxardi G, Suvarnpradip N, Hoffer D Proc Natl Acad Sci U S A. 2025; 122(3):e2417228122.

PMID: 39823300 PMC: 11759899. DOI: 10.1073/pnas.2417228122.


Single-cell sequencing in diabetic retinopathy: progress and prospects.

Yang T, Zhang N, Yang N J Transl Med. 2025; 23(1):49.

PMID: 39806376 PMC: 11727737. DOI: 10.1186/s12967-024-06066-x.


Trends and challenges in organoid modeling and expansion with pluripotent stem cells and somatic tissue.

Ge J, Wang Y, Li Q, Liu F, Lei Q, Zheng Y PeerJ. 2024; 12:e18422.

PMID: 39619184 PMC: 11608026. DOI: 10.7717/peerj.18422.


References
1.
Reichman S, Slembrouck A, Gagliardi G, Chaffiol A, Terray A, Nanteau C . Generation of Storable Retinal Organoids and Retinal Pigmented Epithelium from Adherent Human iPS Cells in Xeno-Free and Feeder-Free Conditions. Stem Cells. 2017; 35(5):1176-1188. DOI: 10.1002/stem.2586. View

2.
Le T, Wroblewski E, Patel S, Riesenberg A, Brown N . Math5 is required for both early retinal neuron differentiation and cell cycle progression. Dev Biol. 2006; 295(2):764-78. DOI: 10.1016/j.ydbio.2006.03.055. View

3.
Nelson B, Ueki Y, Reardon S, Karl M, Georgi S, Hartman B . Genome-wide analysis of Müller glial differentiation reveals a requirement for Notch signaling in postmitotic cells to maintain the glial fate. PLoS One. 2011; 6(8):e22817. PMC: 3149061. DOI: 10.1371/journal.pone.0022817. View

4.
OBrien K, Schulte D, Hendrickson A . Expression of photoreceptor-associated molecules during human fetal eye development. Mol Vis. 2003; 9:401-9. View

5.
Mu X, Fu X, Sun H, Beremand P, Thomas T, Klein W . A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate. Dev Biol. 2005; 280(2):467-81. DOI: 10.1016/j.ydbio.2005.01.028. View