» Articles » PMID: 31999538

The Role of the Epicardium During Heart Development and Repair

Overview
Journal Circ Res
Date 2020 Jan 31
PMID 31999538
Citations 92
Authors
Affiliations
Soon will be listed here.
Abstract

The heart is lined by a single layer of mesothelial cells called the epicardium that provides important cellular contributions for embryonic heart formation. The epicardium harbors a population of progenitor cells that undergo epithelial-to-mesenchymal transition displaying characteristic conversion of planar epithelial cells into multipolar and invasive mesenchymal cells before differentiating into nonmyocyte cardiac lineages, such as vascular smooth muscle cells, pericytes, and fibroblasts. The epicardium is also a source of paracrine cues that are essential for fetal cardiac growth, coronary vessel patterning, and regenerative heart repair. Although the epicardium becomes dormant after birth, cardiac injury reactivates developmental gene programs that stimulate epithelial-to-mesenchymal transition; however, it is not clear how the epicardium contributes to disease progression or repair in the adult. In this review, we will summarize the molecular mechanisms that control epicardium-derived progenitor cell migration, and the functional contributions of the epicardium to heart formation and cardiomyopathy. Future perspectives will be presented to highlight emerging therapeutic strategies aimed at harnessing the regenerative potential of the fetal epicardium for cardiac repair.

Citing Articles

An model for cardiac organoid production: The combined role of geometrical confinement and substrate stiffness.

Santoro R, Piacentini L, Vavassori C, Benzoni P, Colombo G, Banfi C Mater Today Bio. 2025; 31:101566.

PMID: 40061214 PMC: 11889630. DOI: 10.1016/j.mtbio.2025.101566.


Spatiotemporal transcriptomics elucidates the pathogenesis of fulminant viral myocarditis.

Li H, Chen X, Wang J, Shen J, Abuduwufuer K, Zhang Z Signal Transduct Target Ther. 2025; 10(1):59.

PMID: 39924580 PMC: 11808084. DOI: 10.1038/s41392-025-02143-9.


The role of the extracellular matrix in cardiac regeneration.

Wang X, Yu S, Xie L, Xiang M, Ma H Heliyon. 2025; 11(1):e41157.

PMID: 39834404 PMC: 11745795. DOI: 10.1016/j.heliyon.2024.e41157.


Human epicardial organoids from pluripotent stem cells resemble fetal stage with potential cardiomyocyte- transdifferentiation.

Wang F, Zou X, Zheng H, Kong T, Pei D Cell Biosci. 2025; 15(1):4.

PMID: 39825425 PMC: 11740338. DOI: 10.1186/s13578-024-01339-w.


The Wilms' Tumor Suppressor WT1 in Cardiomyocytes: Implications for Cardiac Homeostasis and Repair.

Diaz Del Moral S, Wagner N, Wagner K Cells. 2025; 13(24.

PMID: 39768169 PMC: 11674098. DOI: 10.3390/cells13242078.


References
1.
Quaggin S, Schwartz L, Cui S, Igarashi P, Deimling J, Post M . The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development. 1999; 126(24):5771-83. DOI: 10.1242/dev.126.24.5771. View

2.
Nahirney P, Mikawa T, Fischman D . Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev Dyn. 2003; 227(4):511-23. DOI: 10.1002/dvdy.10335. View

3.
Lu J, Chang P, Richardson J, Gan L, Weiler H, Olson E . The basic helix-loop-helix transcription factor capsulin controls spleen organogenesis. Proc Natl Acad Sci U S A. 2000; 97(17):9525-30. PMC: 16898. DOI: 10.1073/pnas.97.17.9525. View

4.
Rui L, Yu N, Hong L, Feng H, Chunyong H, Jian M . Extending the time window of mammalian heart regeneration by thymosin beta 4. J Cell Mol Med. 2014; 18(12):2417-24. PMC: 4302647. DOI: 10.1111/jcmm.12421. View

5.
Wei K, Serpooshan V, Hurtado C, Diez-Cunado M, Zhao M, Maruyama S . Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015; 525(7570):479-85. PMC: 4762253. DOI: 10.1038/nature15372. View