» Articles » PMID: 31944510

Remote Participation During Glycosylation Reactions of Galactose Building Blocks: Direct Evidence from Cryogenic Vibrational Spectroscopy

Overview
Specialty Chemistry
Date 2020 Jan 17
PMID 31944510
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

The stereoselective formation of 1,2-cis-glycosidic bonds is challenging. However, 1,2-cis-selectivity can be induced by remote participation of C4 or C6 ester groups. Reactions involving remote participation are believed to proceed via a key ionic intermediate, the glycosyl cation. Although mechanistic pathways were postulated many years ago, the structure of the reaction intermediates remained elusive owing to their short-lived nature. Herein, we unravel the structure of glycosyl cations involved in remote participation reactions via cryogenic vibrational spectroscopy and first principles theory. Acetyl groups at C4 ensure α-selective galactosylations by forming a covalent bond to the anomeric carbon in dioxolenium-type ions. Unexpectedly, also benzyl ether protecting groups can engage in remote participation and promote the stereoselective formation of 1,2-cis-glycosidic bonds.

Citing Articles

Elucidating reactive sugar-intermediates by mass spectrometry.

Chang C, Wehner D, Prabhu G, Moon E, Safferthal M, Bechtella L Commun Chem. 2025; 8(1):67.

PMID: 40055429 PMC: 11889121. DOI: 10.1038/s42004-025-01467-5.


The effect of neighbouring group participation and possible long range remote group participation in glycosylation.

Das R, Mukhopadhyay B Beilstein J Org Chem. 2025; 21:369-406.

PMID: 39996165 PMC: 11849559. DOI: 10.3762/bjoc.21.27.


Stereoelectronic Effect of Protecting Groups on the Stability of Galactosyl Donor Intermediates.

Kwok R, Rutkoski R, Nagorny P, Marianski M Molecules. 2025; 30(2).

PMID: 39860088 PMC: 11767833. DOI: 10.3390/molecules30020218.


Mechanism of C-3 Acyl Neighboring Group Participation in Mannuronic Acid Glycosyl Donors.

de Kleijne F, Moons P, Ter Braak F, Almizori H, Jakobs L, Houthuijs K J Am Chem Soc. 2024; 147(1):932-944.

PMID: 39692559 PMC: 11726434. DOI: 10.1021/jacs.4c13910.


Mechanistic insight into benzylidene-directed glycosylation reactions using cryogenic infrared spectroscopy.

Chang C, Greis K, Prabhu G, Wehner D, Kirschbaum C, Ober K Nat Synth. 2024; 3(11):1377-1384.

PMID: 39524531 PMC: 11549046. DOI: 10.1038/s44160-024-00619-0.


References
1.
Gonzalez Florez A, Mucha E, Ahn D, Gewinner S, Schollkopf W, Pagel K . Charge-Induced Unzipping of Isolated Proteins to a Defined Secondary Structure. Angew Chem Int Ed Engl. 2016; 55(10):3295-9. PMC: 4770441. DOI: 10.1002/anie.201510983. View

2.
Yao D, Liu Y, Yan S, Li Y, Hu C, Ding N . Evidence of robust participation by an equatorial 4-O group in glycosylation on a 2-azido-2-deoxy-glucopyranosyl donor. Chem Commun (Camb). 2017; 53(20):2986-2989. DOI: 10.1039/c7cc00274b. View

3.
Elferink H, Severijnen M, Martens J, Mensink R, Berden G, Oomens J . Direct Experimental Characterization of Glycosyl Cations by Infrared Ion Spectroscopy. J Am Chem Soc. 2018; 140(19):6034-6038. PMC: 5958338. DOI: 10.1021/jacs.8b01236. View

4.
Lebedel L, Arda A, Martin A, Desire J, Mingot A, Aufiero M . Structural and Computational Analysis of 2-Halogeno-Glycosyl Cations in the Presence of a Superacid: An Expansive Platform. Angew Chem Int Ed Engl. 2019; 58(39):13758-13762. DOI: 10.1002/anie.201907001. View

5.
Chatterjee S, Moon S, Hentschel F, Gilmore K, Seeberger P . An Empirical Understanding of the Glycosylation Reaction. J Am Chem Soc. 2018; 140(38):11942-11953. DOI: 10.1021/jacs.8b04525. View