» Articles » PMID: 36939315

Decoding the Fucose Migration Product During Mass-Spectrometric Analysis of Blood Group Epitopes

Abstract

Fucose is a signaling carbohydrate that is attached at the end of glycan processing. It is involved in a range of processes, such as the selectin-dependent leukocyte adhesion or pathogen-receptor interactions. Mass-spectrometric techniques, which are commonly used to determine the structure of glycans, frequently show fucose-containing chimeric fragments that obfuscate the analysis. The rearrangement leading to these fragments-often referred to as fucose migration-has been known for more than 25 years, but the chemical identity of the rearrangement product remains unclear. In this work, we combine ion-mobility spectrometry, radical-directed dissociation mass spectrometry, cryogenic IR spectroscopy of ions, and density-functional theory calculations to deduce the product of the rearrangement in the model trisaccharides Lewis x and blood group H2. The structural search yields the fucose moiety attached to the galactose with an α(1→6) glycosidic bond as the most likely product.

Citing Articles

Stereoelectronic Effect of Protecting Groups on the Stability of Galactosyl Donor Intermediates.

Kwok R, Rutkoski R, Nagorny P, Marianski M Molecules. 2025; 30(2).

PMID: 39860088 PMC: 11767833. DOI: 10.3390/molecules30020218.


Non-targeted N-glycome profiling reveals multiple layers of organ-specific diversity in mice.

Helm J, Mereiter S, Oliveira T, Gattinger A, Markovitz D, Penninger J Nat Commun. 2024; 15(1):9725.

PMID: 39521793 PMC: 11550822. DOI: 10.1038/s41467-024-54134-z.


Uncovering missing glycans and unexpected fragments with pGlycoNovo for site-specific glycosylation analysis across species.

Zeng W, Yan G, Zhao H, Liu C, Cao W Nat Commun. 2024; 15(1):8055.

PMID: 39277585 PMC: 11401942. DOI: 10.1038/s41467-024-52099-7.


Reinvestigation of the internal glycan rearrangement of Lewis a and blood group type H1 epitopes.

Kontodimas V, Yaman M, Greis K, Lettow M, Pagel K, Marianski M Phys Chem Chem Phys. 2024; 26(19):14160-14170.

PMID: 38712976 PMC: 11147448. DOI: 10.1039/d3cp04491b.


Non-targeted isomer-sensitive N-glycome analysis reveals new layers of organ-specific diversity in mice.

Stadlmann J, Helm J, Mereiter S, Oliveira T, Gattinger A, Markovitz D Res Sq. 2024; .

PMID: 38659835 PMC: 11042426. DOI: 10.21203/rs.3.rs-4130712/v1.


References
1.
Hecht E, Loziuk P, Muddiman D . Xylose Migration During Tandem Mass Spectrometry of N-Linked Glycans. J Am Soc Mass Spectrom. 2017; 28(4):729-732. PMC: 5373971. DOI: 10.1007/s13361-016-1588-5. View

2.
Ruhaak L, Xu G, Li Q, Goonatilleke E, Lebrilla C . Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev. 2018; 118(17):7886-7930. PMC: 7757723. DOI: 10.1021/acs.chemrev.7b00732. View

3.
Li J, Hsu H, Mountz J, Allen J . Unmasking Fucosylation: from Cell Adhesion to Immune System Regulation and Diseases. Cell Chem Biol. 2018; 25(5):499-512. DOI: 10.1016/j.chembiol.2018.02.005. View

4.
Schindler B, Barnes L, Renois G, Gray C, Chambert S, Fort S . Anomeric memory of the glycosidic bond upon fragmentation and its consequences for carbohydrate sequencing. Nat Commun. 2017; 8(1):973. PMC: 5645458. DOI: 10.1038/s41467-017-01179-y. View

5.
Desai N, Thomas D, Lee J, Gao J, Beauchamp J . Eradicating mass spectrometric glycan rearrangement by utilizing free radicals. Chem Sci. 2018; 7(8):5390-5397. PMC: 6020757. DOI: 10.1039/c6sc01371f. View