» Articles » PMID: 31922283

Modeling an Equivalent B-value in Diffusion-weighted Steady-state Free Precession

Overview
Journal Magn Reson Med
Publisher Wiley
Specialty Radiology
Date 2020 Jan 11
PMID 31922283
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: Diffusion-weighted steady-state free precession (DW-SSFP) is shown to provide a means to probe non-Gaussian diffusion through manipulation of the flip angle. A framework is presented to define an effective b-value in DW-SSFP.

Theory: The DW-SSFP signal is a summation of coherence pathways with different b-values. The relative contribution of each pathway is dictated by the flip angle. This leads to an apparent diffusion coefficient (ADC) estimate that depends on the flip angle in non-Gaussian diffusion regimes. By acquiring DW-SSFP data at multiple flip angles and modeling the variation in ADC for a given form of non-Gaussianity, the ADC can be estimated at a well-defined effective b-value.

Methods: A gamma distribution is used to model non-Gaussian diffusion, embedded in the Buxton signal model for DW-SSFP. Monte-Carlo simulations of non-Gaussian diffusion in DW-SSFP and diffusion-weighted spin-echo sequences are used to verify the proposed framework. Dependence of ADC on flip angle in DW-SSFP is verified with experimental measurements in a whole, human postmortem brain.

Results: Monte-Carlo simulations reveal excellent agreement between ADCs estimated with diffusion-weighted spin-echo and the proposed framework. Experimental ADC estimates vary as a function of flip angle over the corpus callosum of the postmortem brain, estimating the mean and standard deviation of the gamma distribution as  mm /s and  mm /s.

Conclusion: DW-SSFP can be used to investigate non-Gaussian diffusion by varying the flip angle. By fitting a model of non-Gaussian diffusion, the ADC in DW-SSFP can be estimated at an effective b-value, comparable to more conventional diffusion sequences.

Citing Articles

Investigating time-independent and time-dependent diffusion phenomena using steady-state diffusion MRI.

Tendler B Sci Rep. 2025; 15(1):3580.

PMID: 39875547 PMC: 11775203. DOI: 10.1038/s41598-025-87377-x.


Tensor image registration library: Deformable registration of stand-alone histology images to whole-brain post-mortem MRI data.

Huszar I, Pallebage-Gamarallage M, Bangerter-Christensen S, Brooks H, Fitzgibbon S, Foxley S Neuroimage. 2022; 265:119792.

PMID: 36509214 PMC: 10933796. DOI: 10.1016/j.neuroimage.2022.119792.


Diffusion Breast MRI: Current Standard and Emerging Techniques.

Mendez A, Fang L, Meriwether C, Batasin S, Loubrie S, Rodriguez-Soto A Front Oncol. 2022; 12:844790.

PMID: 35880168 PMC: 9307963. DOI: 10.3389/fonc.2022.844790.


The Digital Brain Bank, an open access platform for post-mortem imaging datasets.

Tendler B, Hanayik T, Ansorge O, Bangerter-Christensen S, Berns G, Bertelsen M Elife. 2022; 11.

PMID: 35297760 PMC: 9042233. DOI: 10.7554/eLife.73153.


Diffusion-weighted double-echo steady-state with a three-dimensional cones trajectory for non-contrast-enhanced breast MRI.

Moran C, Cheng J, Sandino C, Carl M, Alley M, Rosenberg J J Magn Reson Imaging. 2020; 53(5):1594-1605.

PMID: 33382171 PMC: 8564805. DOI: 10.1002/jmri.27492.


References
1.
Foxley S, Jbabdi S, Clare S, Lam W, Ansorge O, Douaud G . Improving diffusion-weighted imaging of post-mortem human brains: SSFP at 7 T. Neuroimage. 2014; 102 Pt 2:579-89. PMC: 4229505. DOI: 10.1016/j.neuroimage.2014.08.014. View

2.
Hall M, Alexander D . Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI. IEEE Trans Med Imaging. 2009; 28(9):1354-64. DOI: 10.1109/TMI.2009.2015756. View

3.
Merboldt K, Bruhn H, Frahm J, Gyngell M, Hanicke W, Deimling M . MRI of "diffusion" in the human brain: new results using a modified CE-FAST sequence. Magn Reson Med. 1989; 9(3):423-9. DOI: 10.1002/mrm.1910090316. View

4.
Jbabdi S, Sotiropoulos S, Savio A, Grana M, Behrens T . Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems. Magn Reson Med. 2012; 68(6):1846-55. PMC: 3359399. DOI: 10.1002/mrm.24204. View

5.
Yarnykh V . Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med. 2006; 57(1):192-200. DOI: 10.1002/mrm.21120. View