» Articles » PMID: 31911595

Heritability Estimates for 361 Blood Metabolites Across 40 Genome-wide Association Studies

Abstract

Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h), and the proportion of heritability captured by known metabolite loci (h) for 309 lipids and 52 organic acids. Our study reveals significant differences in h among different classes of lipids and organic acids. Furthermore, phosphatidylcholines with a high degree of unsaturation have higher h estimates than phosphatidylcholines with low degrees of unsaturation. This study highlights the importance of common genetic variants for metabolite levels, and elucidates the genetic architecture of metabolite classes.

Citing Articles

Merging metabolomics and genomics provides a catalog of genetic factors that influence molecular phenotypes in pigs linking relevant metabolic pathways.

Bovo S, Ribani A, Fanelli F, Galimberti G, Martelli P, Trevisi P Genet Sel Evol. 2025; 57(1):11.

PMID: 40050712 PMC: 11887101. DOI: 10.1186/s12711-025-00960-8.


Construction of Multi-Modal Transcriptome-Small Molecule Interaction Networks from High-Throughput Measurements to Study Human Complex Traits.

Akbary Moghaddam V, Acharya S, Schwaiger-Haber M, Liao S, Jung W, Thyagarajan B bioRxiv. 2025; .

PMID: 39896668 PMC: 11785221. DOI: 10.1101/2025.01.22.634403.


Genetic mapping of serum metabolome to chronic diseases among Han Chinese.

Cheng C, Xu F, Pan X, Wang C, Fan J, Yang Y Cell Genom. 2025; 5(2):100743.

PMID: 39837327 PMC: 11872534. DOI: 10.1016/j.xgen.2024.100743.


Genomic prediction for yield and malting traits in barley using metabolomic and near-infrared spectra.

Raffo M, Sarup P, Jensen J, Guo X, Jensen J, Orabi J Theor Appl Genet. 2025; 138(1):24.

PMID: 39786601 PMC: 11717810. DOI: 10.1007/s00122-024-04806-7.


Genome-wide association study reveals shared and distinct genetic architecture of fatty acids and oxylipins in the Hispanic Community Health Study/Study of Latinos.

Downie C, Highland H, Alotaibi M, Welch B, Howard A, Cheng S HGG Adv. 2024; 6(1):100390.

PMID: 39644095 PMC: 11751521. DOI: 10.1016/j.xhgg.2024.100390.


References
1.
Willemsen G, Vink J, Abdellaoui A, den Braber A, van Beek J, Draisma H . The Adult Netherlands Twin Register: twenty-five years of survey and biological data collection. Twin Res Hum Genet. 2013; 16(1):271-81. PMC: 3739974. DOI: 10.1017/thg.2012.140. View

2.
Fedko I, Hottenga J, Medina-Gomez C, Pappa I, van Beijsterveldt C, Ehli E . Estimation of Genetic Relationships Between Individuals Across Cohorts and Platforms: Application to Childhood Height. Behav Genet. 2015; 45(5):514-28. PMC: 4561077. DOI: 10.1007/s10519-015-9725-7. View

3.
Boomsma D, de Geus E, Vink J, Stubbe J, Distel M, Hottenga J . Netherlands Twin Register: from twins to twin families. Twin Res Hum Genet. 2007; 9(6):849-57. DOI: 10.1375/183242706779462426. View

4.
Wishart D, Djoumbou Feunang Y, Marcu A, Guo A, Liang K, Vazquez-Fresno R . HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2017; 46(D1):D608-D617. PMC: 5753273. DOI: 10.1093/nar/gkx1089. View

5.
Haeussler M, Zweig A, Tyner C, Speir M, Rosenbloom K, Raney B . The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 2018; 47(D1):D853-D858. PMC: 6323953. DOI: 10.1093/nar/gky1095. View