» Articles » PMID: 31862210

Molecular Tuning of the Axonal Mitochondrial Ca Uniporter Ensures Metabolic Flexibility of Neurotransmission

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2019 Dec 22
PMID 31862210
Citations 100
Authors
Affiliations
Soon will be listed here.
Abstract

The brain is a vulnerable metabolic organ and must adapt to different fuel conditions to sustain function. Nerve terminals are a locus of this vulnerability, but how they regulate ATP synthesis as fuel conditions vary is unknown. We show that synapses can switch from glycolytic to oxidative metabolism, but to do so, they rely on activity-driven presynaptic mitochondrial Ca uptake to accelerate ATP production. We demonstrate that, whereas mitochondrial Ca uptake requires elevated extramitochondrial Ca in non-neuronal cells, axonal mitochondria readily take up Ca in response to small changes in external Ca. We identified the brain-specific protein MICU3 as a critical driver of this tuning of Ca sensitivity. Ablation of MICU3 renders axonal mitochondria similar to non-neuronal mitochondria, prevents acceleration of local ATP synthesis, and impairs presynaptic function under oxidative conditions. Thus, presynaptic mitochondria rely on MICU3 to facilitate mitochondrial Ca uptake during activity and achieve metabolic flexibility.

Citing Articles

Disrupting the network of co-evolving amino terminal domain residues relieves mitochondrial calcium uptake inhibition by MCUb.

Colussi D, Grainger R, Noble M, Lake T, Junop M, Stathopulos P Comput Struct Biotechnol J. 2025; 27:190-213.

PMID: 40017731 PMC: 11867204. DOI: 10.1016/j.csbj.2024.12.007.


Early Synapse-Specific Alterations of Photoreceptor Mitochondria in the EAE Mouse Model of Multiple Sclerosis.

Ibrahim D, Schwarz K, Suiwal S, Maragkou S, Schmitz F Cells. 2025; 14(3).

PMID: 39936997 PMC: 11816939. DOI: 10.3390/cells14030206.


MCU expression in hippocampal CA2 neurons modulates dendritic mitochondrial morphology and synaptic plasticity.

Pannoni K, Fischer Q, Tarannum R, Cawley M, Alsalman M, Acosta N Sci Rep. 2025; 15(1):4540.

PMID: 39915602 PMC: 11802895. DOI: 10.1038/s41598-025-85958-4.


Mitochondrial Complex I and ROS control synapse function through opposing pre- and postsynaptic mechanisms.

Mallik B, Frank C bioRxiv. 2025; .

PMID: 39803545 PMC: 11722341. DOI: 10.1101/2024.12.30.630694.


Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission.

Tiwari A, Myeong J, Hashemiaghdam A, Stunault M, Zhang H, Niu X Sci Adv. 2024; 10(46):eadp7423.

PMID: 39546604 PMC: 11567002. DOI: 10.1126/sciadv.adp7423.


References
1.
Sparagna G, Gunter K, GUNTER T . A system for producing and monitoring in vitro calcium pulses similar to those observed in vivo. Anal Biochem. 1994; 219(1):96-103. DOI: 10.1006/abio.1994.1236. View

2.
Venkatachalam V, Cohen A . Imaging GFP-based reporters in neurons with multiwavelength optogenetic control. Biophys J. 2014; 107(7):1554-63. PMC: 4190653. DOI: 10.1016/j.bpj.2014.08.020. View

3.
Gong Y, Huang C, Li J, Grewe B, Zhang Y, Eismann S . High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science. 2015; 350(6266):1361-6. PMC: 4904846. DOI: 10.1126/science.aab0810. View

4.
Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman J . Sensitive red protein calcium indicators for imaging neural activity. Elife. 2016; 5. PMC: 4846379. DOI: 10.7554/eLife.12727. View

5.
Kingston R, Chen C, Okayama H . Calcium phosphate transfection. Curr Protoc Immunol. 2008; Chapter 10:Unit 10.13. DOI: 10.1002/0471142735.im1013s31. View