» Articles » PMID: 31814690

Adversarial Deep Learning in EEG Biometrics

Overview
Date 2019 Dec 10
PMID 31814690
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Deep learning methods for person identification based on electroencephalographic (EEG) brain activity encounters the problem of exploiting the temporally correlated structures or recording session specific variability within EEG. Furthermore, recent methods have mostly trained and evaluated based on single session EEG data. We address this problem from an invariant representation learning perspective. We propose an adversarial inference approach to extend such deep learning models to learn session-invariant person-discriminative representations that can provide robustness in terms of longitudinal usability. Using adversarial learning within a deep convolutional network, we empirically assess and show improvements with our approach based on longitudinally collected EEG data for person identification from half-second EEG epochs.

Citing Articles

Threats and Mitigation Strategies for Electroencephalography-Based Person Authentication.

Unnisa Z, Tariq A, Din I, Shehzad D, Serhani M, Belkacem A Int J Telemed Appl. 2025; 2025:3946740.

PMID: 39949891 PMC: 11824856. DOI: 10.1155/ijta/3946740.


Joint disentangled representation and domain adversarial training for EEG-based cross-session biometric recognition in single-task protocols.

Liu H, Jin X, Liu D, Kong W, Tang J, Peng Y Cogn Neurodyn. 2025; 19(1):31.

PMID: 39866660 PMC: 11757832. DOI: 10.1007/s11571-024-10214-w.


Cross-session SSVEP brainprint recognition using attentive multi-sub-band depth identity embedding learning network.

Gu C, Jin X, Zhu L, Yi H, Liu H, Yang X Cogn Neurodyn. 2025; 19(1):15.

PMID: 39801915 PMC: 11717760. DOI: 10.1007/s11571-024-10192-z.


Harnessing Few-Shot Learning for EEG signal classification: a survey of state-of-the-art techniques and future directions.

Ahuja C, Sethia D Front Hum Neurosci. 2024; 18:1421922.

PMID: 39050382 PMC: 11266297. DOI: 10.3389/fnhum.2024.1421922.


Automated mood disorder symptoms monitoring from multivariate time-series sensory data: getting the full picture beyond a single number.

Corponi F, Li B, Anmella G, Mas A, Pacchiarotti I, Valenti M Transl Psychiatry. 2024; 14(1):161.

PMID: 38531865 PMC: 10965916. DOI: 10.1038/s41398-024-02876-1.


References
1.
Cecotti H, Graser A . Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans Pattern Anal Mach Intell. 2010; 33(3):433-45. DOI: 10.1109/TPAMI.2010.125. View

2.
LeCun Y, Bengio Y, Hinton G . Deep learning. Nature. 2015; 521(7553):436-44. DOI: 10.1038/nature14539. View

3.
Palaniappan R, Mandic D . Biometrics from brain electrical activity: a machine learning approach. IEEE Trans Pattern Anal Mach Intell. 2007; 29(4):738-42. DOI: 10.1109/TPAMI.2007.1013. View

4.
Marcel S, Millan J . Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Trans Pattern Anal Mach Intell. 2007; 29(4):743-52. DOI: 10.1109/TPAMI.2007.1012. View

5.
Ma L, Minett J, Blu T, Wang W . Resting State EEG-based biometrics for individual identification using convolutional neural networks. Annu Int Conf IEEE Eng Med Biol Soc. 2016; 2015:2848-51. DOI: 10.1109/EMBC.2015.7318985. View