» Articles » PMID: 31797922

Type I-F CRISPR-Cas Resistance Against Virulent Phages Results in Abortive Infection and Provides Population-level Immunity

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Dec 5
PMID 31797922
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Type I CRISPR-Cas systems are abundant and widespread adaptive immune systems in bacteria and can greatly enhance bacterial survival in the face of phage infection. Upon phage infection, some CRISPR-Cas immune responses result in bacterial dormancy or slowed growth, which suggests the outcomes for infected cells may vary between systems. Here we demonstrate that type I CRISPR immunity of Pectobacterium atrosepticum leads to suppression of two unrelated virulent phages, ɸTE and ɸM1. Immunity results in an abortive infection response, where infected cells do not survive, but viral propagation is severely decreased, resulting in population protection due to the reduced phage epidemic. Our findings challenge the view of CRISPR-Cas as a system that protects the individual cell and supports growing evidence of abortive infection by some types of CRISPR-Cas systems.

Citing Articles

Distribution of specific prokaryotic immune systems correlates with host optimal growth temperature.

Olijslager L, Weijers D, Swarts D NAR Genom Bioinform. 2024; 6(3):lqae105.

PMID: 39165676 PMC: 11333966. DOI: 10.1093/nargab/lqae105.


Identification of a lytic bacteriophage against clinical isolates of in turkey poults.

Amini M, Ownagh A, Tukmechi A, Allymehr M Vet Res Forum. 2024; 15(6):309-316.

PMID: 39035474 PMC: 11260226. DOI: 10.30466/vrf.2023.2000885.3864.


The novel anti-phage system Shield co-opts an RmuC domain to mediate phage defense across Pseudomonas species.

Macdonald E, Wright R, Connolly J, Strahl H, Brockhurst M, van Houte S PLoS Genet. 2023; 19(6):e1010784.

PMID: 37276233 PMC: 10270631. DOI: 10.1371/journal.pgen.1010784.


Bacterial defences: mechanisms, evolution and antimicrobial resistance.

Smith W, Wucher B, Nadell C, Foster K Nat Rev Microbiol. 2023; 21(8):519-534.

PMID: 37095190 DOI: 10.1038/s41579-023-00877-3.


Acinetobacter Baumannii Phages: Past, Present and Future.

Tu Q, Pu M, Li Y, Wang Y, Li M, Song L Viruses. 2023; 15(3).

PMID: 36992382 PMC: 10057898. DOI: 10.3390/v15030673.


References
1.
Hille F, Charpentier E . CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci. 2016; 371(1707). PMC: 5052741. DOI: 10.1098/rstb.2015.0496. View

2.
Westra E, van Houte S, Oyesiku-Blakemore S, Makin B, Broniewski J, Best A . Parasite Exposure Drives Selective Evolution of Constitutive versus Inducible Defense. Curr Biol. 2015; 25(8):1043-9. DOI: 10.1016/j.cub.2015.01.065. View

3.
Koonin E, Makarova K, Zhang F . Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017; 37:67-78. PMC: 5776717. DOI: 10.1016/j.mib.2017.05.008. View

4.
Kazlauskiene M, Kostiuk G, Venclovas C, Tamulaitis G, Siksnys V . A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science. 2017; 357(6351):605-609. DOI: 10.1126/science.aao0100. View

5.
Richter C, Dy R, McKenzie R, Watson B, Taylor C, Chang J . Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 2014; 42(13):8516-26. PMC: 4117759. DOI: 10.1093/nar/gku527. View