» Articles » PMID: 28722012

Type III CRISPR-Cas Systems Produce Cyclic Oligoadenylate Second Messengers

Overview
Journal Nature
Specialty Science
Date 2017 Jul 20
PMID 28722012
Citations 223
Authors
Affiliations
Soon will be listed here.
Abstract

In many prokaryotes, type III clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) systems detect and degrade invasive genetic elements by an RNA-guided, RNA-targeting multisubunit interference complex. The CRISPR-associated protein Csm6 additionally contributes to interference by functioning as a standalone RNase that degrades invader RNA transcripts, but the mechanism linking invader sensing to Csm6 activity is not understood. Here we show that Csm6 proteins are activated through a second messenger generated by the type III interference complex. Upon target RNA binding by the interference complex, its Cas10 subunit converts ATP into a cyclic oligoadenylate product, which allosterically activates Csm6 by binding to its CRISPR-associated Rossmann fold (CARF) domain. CARF domain mutations that abolish allosteric activation inhibit Csm6 activity in vivo, and mutations in the Cas10 Palm domain phenocopy loss of Csm6. Together, these results point to an unprecedented mechanism for regulation of CRISPR interference that bears striking conceptual similarity to oligoadenylate signalling in mammalian innate immunity.

Citing Articles

Chemical inhibition of a bacterial immune system 1.

Zang Z, Duncan O, Sabonis D, Shi Y, Miraj G, Fedorova I bioRxiv. 2025; .

PMID: 40027640 PMC: 11870472. DOI: 10.1101/2025.02.20.638879.


Nucleic acid recognition during prokaryotic immunity.

Baca C, Marraffini L Mol Cell. 2025; 85(2):309-322.

PMID: 39824170 PMC: 11750177. DOI: 10.1016/j.molcel.2024.12.007.


Mechanistic determinants and dynamics of cA6 synthesis in type III CRISPR-Cas effector complexes.

Jungfer K, Moravcik S, Garcia-Doval C, Knorlein A, Hall J, Jinek M Nucleic Acids Res. 2025; 53(2).

PMID: 39817514 PMC: 11734703. DOI: 10.1093/nar/gkae1277.


A widespread family of viral sponge proteins reveals specific inhibition of nucleotide signals in anti-phage defense.

Chang R, Toyoda H, Hobbs S, Richmond-Buccola D, Wein T, Burger N bioRxiv. 2025; .

PMID: 39803557 PMC: 11722364. DOI: 10.1101/2024.12.30.630793.


CRISPR-based gene editing technology and its application in microbial engineering.

Wei J, Li Y Eng Microbiol. 2024; 3(4):100101.

PMID: 39628916 PMC: 11610974. DOI: 10.1016/j.engmic.2023.100101.


References
1.
Jiang W, Samai P, Marraffini L . Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity. Cell. 2016; 164(4):710-21. PMC: 4752873. DOI: 10.1016/j.cell.2015.12.053. View

2.
Carroll S, Cole J, Viscount T, Geib J, Gehman J, Kuo L . Activation of RNase L by 2',5'-oligoadenylates. Kinetic characterization. J Biol Chem. 1997; 272(31):19193-8. DOI: 10.1074/jbc.272.31.19193. View

3.
Staals R, Zhu Y, Taylor D, Kornfeld J, Sharma K, Barendregt A . RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell. 2014; 56(4):518-30. PMC: 4342149. DOI: 10.1016/j.molcel.2014.10.005. View

4.
Sievers F, Wilm A, Dineen D, Gibson T, Karplus K, Li W . Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011; 7:539. PMC: 3261699. DOI: 10.1038/msb.2011.75. View

5.
Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y . Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev. 2012; 42(1):305-41. DOI: 10.1039/c2cs35206k. View