» Articles » PMID: 31793902

Identifying Dynamic, Partially Occupied Residues Using Anomalous Scattering

Overview
Specialty Biochemistry
Date 2019 Dec 4
PMID 31793902
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Although often presented as taking single `snapshots' of the conformation of a protein, X-ray crystallography provides an averaged structure over time and space within the crystal. The important but difficult task of characterizing structural ensembles in crystals is typically limited to small conformational changes, such as multiple side-chain conformations. A crystallographic method was recently introduced that utilizes residual electron and anomalous density (READ) to characterize structural ensembles encompassing large-scale structural changes. Key to this method is an ability to accurately measure anomalous signals and distinguish them from noise or other anomalous scatterers. This report presents an optimized data-collection and analysis strategy for partially occupied iodine anomalous signals. Using the long-wavelength-optimized beamline I23 at Diamond Light Source, the ability to accurately distinguish the positions of anomalous scatterers with occupancies as low as ∼12% is demonstrated. The number and positions of these anomalous scatterers are consistent with previous biophysical, kinetic and structural data that suggest that the protein Im7 binds to the chaperone Spy in multiple partially occupied conformations. Finally, READ selections demonstrate that re-measured data using the new protocols are consistent with the previously characterized structural ensemble of the chaperone Spy with its client Im7. This study shows that a long-wavelength beamline results in easily validated anomalous signals that are strong enough to be used to detect and characterize highly disordered sections of crystal structures.

Citing Articles

Functionally important binding site for a volatile anesthetic in a voltage-gated sodium channel identified by X-ray crystallography.

Hollingworth D, Herold K, Kelly G, Mykhaylyk V, Xiang J, Zhang D bioRxiv. 2024; .

PMID: 39574657 PMC: 11580951. DOI: 10.1101/2024.11.04.621342.


High-Confidence Placement of Fragments into Electron Density Using Anomalous Diffraction-A Case Study Using Hits Targeting SARS-CoV-2 Non-Structural Protein 1.

Ma S, Mykhaylyk V, Bowler M, Pinotsis N, Kozielski F Int J Mol Sci. 2023; 24(13).

PMID: 37446375 PMC: 10342360. DOI: 10.3390/ijms241311197.


How do Chaperones Bind (Partly) Unfolded Client Proteins?.

Sucec I, Bersch B, Schanda P Front Mol Biosci. 2021; 8:762005.

PMID: 34760928 PMC: 8573040. DOI: 10.3389/fmolb.2021.762005.


Ion permeation in potassium ion channels.

Coates L Acta Crystallogr D Struct Biol. 2020; 76(Pt 4):326-331.

PMID: 32254056 PMC: 7137105. DOI: 10.1107/S2059798320003599.

References
1.
Koldewey P, Stull F, Horowitz S, Martin R, Bardwell J . Forces Driving Chaperone Action. Cell. 2016; 166(2):369-379. PMC: 4947014. DOI: 10.1016/j.cell.2016.05.054. View

2.
Bury C, Brooks-Bartlett J, Walsh S, Garman E . Estimate your dose: RADDOSE-3D. Protein Sci. 2017; 27(1):217-228. PMC: 5734275. DOI: 10.1002/pro.3302. View

3.
Horowitz S, Salmon L, Koldewey P, Ahlstrom L, Martin R, Quan S . Reply to 'Misreading chaperone-substrate complexes from random noise'. Nat Struct Mol Biol. 2018; 25(11):990-991. DOI: 10.1038/s41594-018-0145-2. View

4.
Pflug A, Johnson K, Engh R . Anomalous dispersion analysis of inhibitor flexibility: a case study of the kinase inhibitor H-89. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012; 68(Pt 8):873-7. PMC: 3412763. DOI: 10.1107/S1744309112028655. View

5.
Wang H, Elferich J, Gouaux E . Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context. Nat Struct Mol Biol. 2012; 19(2):212-9. PMC: 3322350. DOI: 10.1038/nsmb.2215. View