The Contribution of Multicellular Model Organisms to Neuronal Ceroid Lipofuscinosis Research
Overview
Biophysics
Genetics
Molecular Biology
Affiliations
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Targeting autophagy impairment improves the phenotype of a novel CLN8 zebrafish model.
Marchese M, Bernardi S, Ogi A, Licitra R, Silvi G, Mero S Neurobiol Dis. 2024; 197:106536.
PMID: 38763444 PMC: 11163972. DOI: 10.1016/j.nbd.2024.106536.
Barker E, Milburn A, Helassa N, Hammond D, Sanchez-Soriano N, Morgan A Biochem J. 2024; .
PMID: 38193346 PMC: 10903463. DOI: 10.1042/BCJ20230319.
An altered transcriptome underlies -deficiency phenotypes in .
Kim W, Huber R Front Genet. 2022; 13:1045738.
PMID: 36437924 PMC: 9686302. DOI: 10.3389/fgene.2022.1045738.
Barker E, Morgan A, Barclay J Hum Mol Genet. 2022; 32(11):1772-1785.
PMID: 36282524 PMC: 10196665. DOI: 10.1093/hmg/ddac263.
Mfsd8 Modulates Growth and the Early Stages of Multicellular Development in .
Yap S, Kim W, Huber R Front Cell Dev Biol. 2022; 10:930235.
PMID: 35756993 PMC: 9218796. DOI: 10.3389/fcell.2022.930235.