» Articles » PMID: 31717785

Creating a Reliable Mass Spectral-Retention Time Library for All Ion Fragmentation-Based Metabolomics

Overview
Journal Metabolites
Publisher MDPI
Date 2019 Nov 14
PMID 31717785
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Accurate metabolite identification remains one of the primary challenges in a metabolomics study. A reliable chemical spectral library increases the confidence in annotation, and the availability of raw and annotated data in public databases facilitates the transfer of Liquid chromatography coupled to mass spectrometry (LC-MS) methods across laboratories. Here, we illustrate how the combination of MS2 spectra, accurate mass, and retention time can improve the confidence of annotation and provide techniques to create a reliable library for all ion fragmentation (AIF) data with a focus on the characterization of the retention time. The resulting spectral library incorporates information on adducts and in-source fragmentation in AIF data, while noise peaks are effectively minimized through multiple deconvolution processes. We also report the development of the Mass Spectral LIbrary MAnager (MS-LIMA) tool to accelerate library sharing and transfer across laboratories. This library construction strategy improves the confidence in annotation for AIF data in LC-MS-based metabolomics and will facilitate the sharing of retention time and mass spectral data in the metabolomics community.

Citing Articles

Recent advances in proteomics and metabolomics in plants.

Yan S, Bhawal R, Yin Z, Thannhauser T, Zhang S Mol Hortic. 2023; 2(1):17.

PMID: 37789425 PMC: 10514990. DOI: 10.1186/s43897-022-00038-9.


Linking MS1 and MS2 signals in positive and negative modes of LC-HRMS in untargeted metabolomics using the ROIMCR approach.

Yamamoto F, Perez-Lopez C, Lopez-Antia A, Lacorte S, de Souza Abessa D, Tauler R Anal Bioanal Chem. 2023; 415(25):6213-6225.

PMID: 37587312 PMC: 10558381. DOI: 10.1007/s00216-023-04893-3.


Early Differentiation Signatures in Human Induced Pluripotent Stem Cells Determined by Non-Targeted Metabolomics Analysis.

Abdalkader R, Chaleckis R, Fujita T Metabolites. 2023; 13(6).

PMID: 37367864 PMC: 10301689. DOI: 10.3390/metabo13060706.


IDSL.CSA: Composite Spectra Analysis for Chemical Annotation of Untargeted Metabolomics Datasets.

Baygi S, Kumar Y, Barupal D Anal Chem. 2023; 95(25):9480-9487.

PMID: 37311059 PMC: 11080491. DOI: 10.1021/acs.analchem.3c00376.


MetaPro: a web-based metabolomics application for LC-MS data batch inspection and library curation.

An S, Wang R, Lu M, Zhang C, Liu H, Wang J Metabolomics. 2023; 19(6):57.

PMID: 37289291 PMC: 10250499. DOI: 10.1007/s11306-023-02018-6.


References
1.
Senan O, Aguilar-Mogas A, Navarro M, Capellades J, Noon L, Burks D . CliqueMS: a computational tool for annotating in-source metabolite ions from LC-MS untargeted metabolomics data based on a coelution similarity network. Bioinformatics. 2019; 35(20):4089-4097. PMC: 6792096. DOI: 10.1093/bioinformatics/btz207. View

2.
Sumner L, Amberg A, Barrett D, Beale M, Beger R, Daykin C . Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2013; 3(3):211-221. PMC: 3772505. DOI: 10.1007/s11306-007-0082-2. View

3.
Pluskal T, Nakamura T, Villar-Briones A, Yanagida M . Metabolic profiling of the fission yeast S. pombe: quantification of compounds under different temperatures and genetic perturbation. Mol Biosyst. 2009; 6(1):182-98. DOI: 10.1039/b908784b. View

4.
Wang R, Yin Y, Zhu Z . Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Anal Bioanal Chem. 2019; 411(19):4349-4357. DOI: 10.1007/s00216-019-01709-1. View

5.
Tada I, Chaleckis R, Tsugawa H, Meister I, Zhang P, Lazarinis N . Correlation-Based Deconvolution (CorrDec) To Generate High-Quality MS2 Spectra from Data-Independent Acquisition in Multisample Studies. Anal Chem. 2020; 92(16):11310-11317. DOI: 10.1021/acs.analchem.0c01980. View