» Articles » PMID: 31649265

Structural Transitions During the Scaffolding-driven Assembly of a Viral Capsid

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Oct 26
PMID 31649265
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Assembly of tailed bacteriophages and herpesviruses starts with formation of procapsids (virion precursors without DNA). Scaffolding proteins (SP) drive assembly by chaperoning the major capsid protein (MCP) to build an icosahedral lattice. Here we report near-atomic resolution cryo-EM structures of the bacteriophage SPP1 procapsid, the intermediate expanded procapsid with partially released SPs, and the mature capsid with DNA. In the intermediate state, SPs are bound only to MCP pentons and to adjacent subunits from hexons. SP departure results in the expanded state associated with unfolding of the MCP N-terminus and straightening of E-loops. The newly formed extensive inter-capsomere bonding appears to compensate for release of SPs that clasp MCP capsomeres together. Subsequent DNA packaging instigates bending of MCP A domain loops outwards, closing the hexons central opening and creating the capsid auxiliary protein binding interface. These findings provide a molecular basis for the sequential structural rearrangements during viral capsid maturation.

Citing Articles

Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages.

Yang Y, Shao Q, Guo M, Han L, Zhao X, Wang A Nat Commun. 2024; 15(1):6551.

PMID: 39095371 PMC: 11297242. DOI: 10.1038/s41467-024-50811-1.


Partial Atomic Model of the Tailed Lactococcal Phage TP901-1 as Predicted by AlphaFold2: Revelations and Limitations.

Mahony J, Goulet A, Van Sinderen D, Cambillau C Viruses. 2023; 15(12).

PMID: 38140681 PMC: 10747895. DOI: 10.3390/v15122440.


A symmetry mismatch unraveled: How phage HK97 scaffold flexibly accommodates a 12-fold pore at a 5-fold viral capsid vertex.

Huet A, Oh B, Maurer J, Duda R, Conway J Sci Adv. 2023; 9(24):eadg8868.

PMID: 37327331 PMC: 10275583. DOI: 10.1126/sciadv.adg8868.


Assembly and Capsid Expansion Mechanism of Bacteriophage P22 Revealed by High-Resolution Cryo-EM Structures.

Xiao H, Zhou J, Yang F, Liu Z, Song J, Chen W Viruses. 2023; 15(2).

PMID: 36851569 PMC: 9965877. DOI: 10.3390/v15020355.


Structures of a large prolate virus capsid in unexpanded and expanded states generate insights into the icosahedral virus assembly.

Fang Q, Tang W, Fokine A, Mahalingam M, Shao Q, Rossmann M Proc Natl Acad Sci U S A. 2022; 119(40):e2203272119.

PMID: 36161892 PMC: 9546572. DOI: 10.1073/pnas.2203272119.


References
1.
Riva S, Polsinelli M, Falaschi A . A new phage of Bacillus subtilis with infectious DNA having separable strands. J Mol Biol. 1968; 35(2):347-56. DOI: 10.1016/s0022-2836(68)80029-4. View

2.
Fokine A, Leiman P, Shneider M, Ahvazi B, Boeshans K, Steven A . Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc Natl Acad Sci U S A. 2005; 102(20):7163-8. PMC: 1129118. DOI: 10.1073/pnas.0502164102. View

3.
Greene B, Jakana J, Prasad B, King J, Prevelige Jr P, Chiu W . Three-dimensional structure of scaffolding-containing phage p22 procapsids by electron cryo-microscopy. J Mol Biol. 1996; 260(1):85-98. DOI: 10.1006/jmbi.1996.0383. View

4.
Gertsman I, Gan L, Guttman M, Lee K, Speir J, Duda R . An unexpected twist in viral capsid maturation. Nature. 2009; 458(7238):646-50. PMC: 2765791. DOI: 10.1038/nature07686. View

5.
Emsley P, Cowtan K . Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 12 Pt 1):2126-32. DOI: 10.1107/S0907444904019158. View