6.
Garcia-Granados R, Lerma-Escalera J, Morones-Ramirez J
. Metabolic Engineering and Synthetic Biology: Synergies, Future, and Challenges. Front Bioeng Biotechnol. 2019; 7:36.
PMC: 6409320.
DOI: 10.3389/fbioe.2019.00036.
View
7.
Zeng L, Zhang Q, Jiang C, Zheng Y, Zuo Y, Qin J
. Development of L. Plants with High-Yield Hyoscyamine and without Its Derivatives Using the CRISPR/Cas9 System. Int J Mol Sci. 2021; 22(4).
PMC: 7915368.
DOI: 10.3390/ijms22041731.
View
8.
Nazeri A, Niazi A, Afsharifar A, Taghavi S, Moghadam A, Aram F
. Heterologous production of hyaluronic acid in Nicotiana tabacum hairy roots expressing a human hyaluronan synthase 2. Sci Rep. 2021; 11(1):17966.
PMC: 8429445.
DOI: 10.1038/s41598-021-97139-0.
View
9.
Singh A, Kumar S, Dwivedi V, Rai A, Pal S, Shasany A
. A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways. New Phytol. 2017; 215(3):1115-1131.
DOI: 10.1111/nph.14663.
View
10.
Guo M, Lv H, Chen H, Dong S, Zhang J, Liu W
. Strategies on biosynthesis and production of bioactive compounds in medicinal plants. Chin Herb Med. 2024; 16(1):13-26.
PMC: 10874775.
DOI: 10.1016/j.chmed.2023.01.007.
View
11.
Sivanandhan G, Selvaraj N, Ganapathi A, Manickavasagam M
. Enhanced biosynthesis of withanolides by elicitation and precursor feeding in cell suspension culture of Withania somnifera (L.) Dunal in shake-flask culture and bioreactor. PLoS One. 2014; 9(8):e104005.
PMC: 4121209.
DOI: 10.1371/journal.pone.0104005.
View
12.
Pepe M, Hesami M, Small F, Jones A
. Comparative Analysis of Machine Learning and Evolutionary Optimization Algorithms for Precision Micropropagation of : Prediction and Validation of Shoot Growth and Development Based on the Optimization of Light and Carbohydrate Sources. Front Plant Sci. 2021; 12:757869.
PMC: 8566924.
DOI: 10.3389/fpls.2021.757869.
View
13.
Taylor J, King R, Altmann T, Fiehn O
. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics. 2002; 18 Suppl 2:S241-8.
DOI: 10.1093/bioinformatics/18.suppl_2.s241.
View
14.
Isah T
. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019; 52(1):39.
PMC: 6661828.
DOI: 10.1186/s40659-019-0246-3.
View
15.
Thorat S, Poojari P, Kaniyassery A, Kiran K, Satyamoorthy K, Mahato K
. Red laser-mediated alterations in seed germination, growth, pigments and withanolide content of Ashwagandha [Withania somnifera (L.) Dunal]. J Photochem Photobiol B. 2021; 216:112144.
DOI: 10.1016/j.jphotobiol.2021.112144.
View
16.
Helmy M, Smith D, Selvarajoo K
. Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metab Eng Commun. 2020; 11:e00149.
PMC: 7546651.
DOI: 10.1016/j.mec.2020.e00149.
View
17.
Moore B, Wang P, Fan P, Leong B, Schenck C, Lloyd J
. Robust predictions of specialized metabolism genes through machine learning. Proc Natl Acad Sci U S A. 2019; 116(6):2344-2353.
PMC: 6369796.
DOI: 10.1073/pnas.1817074116.
View
18.
Bhat W, Lattoo S, Razdan S, Dhar N, Rana S, Dhar R
. Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene. 2012; 499(1):25-36.
DOI: 10.1016/j.gene.2012.03.004.
View
19.
Gutierrez-Valdes N, Hakkinen S, Lemasson C, Guillet M, Oksman-Caldentey K, Ritala A
. Hairy Root Cultures-A Versatile Tool With Multiple Applications. Front Plant Sci. 2020; 11:33.
PMC: 7064051.
DOI: 10.3389/fpls.2020.00033.
View
20.
Kim G, Kim W, Kim H, Lee S
. Machine learning applications in systems metabolic engineering. Curr Opin Biotechnol. 2019; 64:1-9.
DOI: 10.1016/j.copbio.2019.08.010.
View