» Articles » PMID: 31555805

Thera-SAbDab: the Therapeutic Structural Antibody Database

Overview
Specialty Biochemistry
Date 2019 Sep 27
PMID 31555805
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

The Therapeutic Structural Antibody Database (Thera-SAbDab; http://opig.stats.ox.ac.uk/webapps/therasabdab) tracks all antibody- and nanobody-related therapeutics recognized by the World Health Organisation (WHO), and identifies any corresponding structures in the Structural Antibody Database (SAbDab) with near-exact or exact variable domain sequence matches. Thera-SAbDab is synchronized with SAbDab to update weekly, reflecting new Protein Data Bank entries and the availability of new sequence data published by the WHO. Each therapeutic summary page lists structural coverage (with links to the appropriate SAbDab entries), alignments showing where any near-matches deviate in sequence, and accompanying metadata, such as intended target and investigated conditions. Thera-SAbDab can be queried by therapeutic name, by a combination of metadata, or by variable domain sequence - returning all therapeutics that are within a specified sequence identity over a specified region of the query. The sequences of all therapeutics listed in Thera-SAbDab (461 unique molecules, as of 5 August 2019) are downloadable as a single file with accompanying metadata.

Citing Articles

An antibody developability triaging pipeline exploiting protein language models.

Sweet-Jones J, Martin A MAbs. 2025; 17(1):2472009.

PMID: 40038849 PMC: 11901365. DOI: 10.1080/19420862.2025.2472009.


Unlocking the potential of approach in designing antibodies against SARS-CoV-2.

Subramaniam T, Mualif S, Chan W, Abd Halim K Front Bioinform. 2025; 5:1533983.

PMID: 40017562 PMC: 11865036. DOI: 10.3389/fbinf.2025.1533983.


YAbS: The Antibody Society's antibody therapeutics database.

Rawat P, Crescioli S, Prabakaran R, Sharma D, Greiff V, Reichert J MAbs. 2025; 17(1):2468845.

PMID: 40013403 PMC: 11869773. DOI: 10.1080/19420862.2025.2468845.


Learning the language of antibody hypervariability.

Singh R, Im C, Qiu Y, Mackness B, Gupta A, Joren T Proc Natl Acad Sci U S A. 2025; 122(1):e2418918121.

PMID: 39793083 PMC: 11725859. DOI: 10.1073/pnas.2418918121.


Predicting purification process fit of monoclonal antibodies using machine learning.

Maier A, Cha M, Burgess S, Wang A, Cuellar C, Kim S MAbs. 2025; 17(1):2439988.

PMID: 39782766 PMC: 11730362. DOI: 10.1080/19420862.2024.2439988.


References
1.
Leem J, Dunbar J, Georges G, Shi J, Deane C . ABodyBuilder: Automated antibody structure prediction with data-driven accuracy estimation. MAbs. 2016; 8(7):1259-1268. PMC: 5058620. DOI: 10.1080/19420862.2016.1205773. View

2.
Muhammed M, Aki-Yalcin E . Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem Biol Drug Des. 2018; 93(1):12-20. DOI: 10.1111/cbdd.13388. View

3.
van Montfort R, Workman P . Structure-based drug design: aiming for a perfect fit. Essays Biochem. 2017; 61(5):431-437. PMC: 5869280. DOI: 10.1042/EBC20170052. View

4.
Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H . The Protein Data Bank. Nucleic Acids Res. 1999; 28(1):235-42. PMC: 102472. DOI: 10.1093/nar/28.1.235. View

5.
Kaplon H, Reichert J . Antibodies to watch in 2019. MAbs. 2018; 11(2):219-238. PMC: 6380461. DOI: 10.1080/19420862.2018.1556465. View