» Articles » PMID: 31548653

Common Principles and Best Practices for Engineering Microbiomes

Abstract

Despite broad scientific interest in harnessing the power of Earth's microbiomes, knowledge gaps hinder their efficient use for addressing urgent societal and environmental challenges. We argue that structuring research and technology developments around a design-build-test-learn (DBTL) cycle will advance microbiome engineering and spur new discoveries of the basic scientific principles governing microbiome function. In this Review, we present key elements of an iterative DBTL cycle for microbiome engineering, focusing on generalizable approaches, including top-down and bottom-up design processes, synthetic and self-assembled construction methods, and emerging tools to analyse microbiome function. These approaches can be used to harness microbiomes for broad applications related to medicine, agriculture, energy and the environment. We also discuss key challenges and opportunities of each approach and synthesize them into best practice guidelines for engineering microbiomes. We anticipate that adoption of a DBTL framework will rapidly advance microbiome-based biotechnologies aimed at improving human and animal health, agriculture and enabling the bioeconomy.

Citing Articles

Construction of Phosphate-Solubilizing Microbial Consortium and Its Effect on the Remediation of Saline-Alkali Soil.

Zhang T, Wang X, Zhou J, Zhou W, Zhou S Microb Ecol. 2025; 88(1):11.

PMID: 40042690 PMC: 11882712. DOI: 10.1007/s00248-024-02485-x.


Evaluating agar-plating and dilution-to-extinction isolation methods for generating oak-associated microbial culture collections.

Ordonez A, Hussain U, Cambon M, Golyshin P, Downie J, McDonald J ISME Commun. 2025; 5(1):ycaf019.

PMID: 40041709 PMC: 11878766. DOI: 10.1093/ismeco/ycaf019.


Design and regulation of engineered bacteria for environmental release.

Chemla Y, Sweeney C, Wozniak C, Voigt C Nat Microbiol. 2025; 10(2):281-300.

PMID: 39905169 DOI: 10.1038/s41564-024-01918-0.


Bioenergetic trade-offs can reveal the path to superior microbial CO fixation pathways.

Taha A, Paton M, Rodriguez J mSystems. 2025; 10(2):e0127424.

PMID: 39868826 PMC: 11834467. DOI: 10.1128/msystems.01274-24.


Microbial secondary metabolites: advancements to accelerate discovery towards application.

Dinglasan J, Otani H, Doering D, Udwary D, Mouncey N Nat Rev Microbiol. 2025; .

PMID: 39824928 DOI: 10.1038/s41579-024-01141-y.


References
1.
Lagier J, Khelaifia S, Alou M, Ndongo S, Dione N, Hugon P . Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol. 2016; 1:16203. DOI: 10.1038/nmicrobiol.2016.203. View

2.
McIlroy S, Saunders A, Albertsen M, Nierychlo M, McIlroy B, Hansen A . MiDAS: the field guide to the microbes of activated sludge. Database (Oxford). 2015; 2015:bav062. PMC: 4483311. DOI: 10.1093/database/bav062. View

3.
Connell J, Ritschdorff E, Whiteley M, Shear J . 3D printing of microscopic bacterial communities. Proc Natl Acad Sci U S A. 2013; 110(46):18380-5. PMC: 3832025. DOI: 10.1073/pnas.1309729110. View

4.
Schaffner M, Ruhs P, Coulter F, Kilcher S, Studart A . 3D printing of bacteria into functional complex materials. Sci Adv. 2017; 3(12):eaao6804. PMC: 5711516. DOI: 10.1126/sciadv.aao6804. View

5.
Thiele I, Palsson B . A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc. 2010; 5(1):93-121. PMC: 3125167. DOI: 10.1038/nprot.2009.203. View