» Articles » PMID: 29214219

3D Printing of Bacteria into Functional Complex Materials

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2017 Dec 8
PMID 29214219
Citations 88
Authors
Affiliations
Soon will be listed here.
Abstract

Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of "living materials" capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.

Citing Articles

3D Bioprinting of Microbial-based Living Materials for Advanced Energy and Environmental Applications.

Pu X, Wu Y, Liu J, Wu B Chem Bio Eng. 2025; 1(7):568-592.

PMID: 39974701 PMC: 11835188. DOI: 10.1021/cbe.4c00024.


Three-Dimensional Hierarchical Cellulose Structures Based on Microbial Synthesis and Advanced Biofabrication.

Liu S, Yang M, Xu W Chem Bio Eng. 2025; 1(10):876-886.

PMID: 39974580 PMC: 11835287. DOI: 10.1021/cbe.4c00143.


Living Porous Ceramics for Bacteria-Regulated Gas Sensing and Carbon Capture.

Dutto A, Kan A, Saraw Z, Maillard A, Zindel D, Studart A Adv Mater. 2024; 37(5):e2412555.

PMID: 39659127 PMC: 11795706. DOI: 10.1002/adma.202412555.


Modulating Microbial Materials - Engineering Bacterial Cellulose with Synthetic Biology.

Malci K, Li I, Kisseroudis N, Ellis T ACS Synth Biol. 2024; 13(12):3857-3875.

PMID: 39509658 PMC: 11669176. DOI: 10.1021/acssynbio.4c00615.


Engineering Microbial Consortia as Living Materials: Advances and Prospectives.

Wang S, Zhan Y, Jiang X, Lai Y ACS Synth Biol. 2024; 13(9):2653-2666.

PMID: 39174016 PMC: 11421429. DOI: 10.1021/acssynbio.4c00313.


References
1.
TITTSLER R, SANDHOLZER L . The Use of Semi-solid Agar for the Detection of Bacterial Motility. J Bacteriol. 1936; 31(6):575-80. PMC: 543748. DOI: 10.1128/jb.31.6.575-580.1936. View

2.
Jungst T, Smolan W, Schacht K, Scheibel T, Groll J . Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chem Rev. 2015; 116(3):1496-539. DOI: 10.1021/acs.chemrev.5b00303. View

3.
Brown Jr R, Willison J, Richardson C . Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci U S A. 1976; 73(12):4565-9. PMC: 431544. DOI: 10.1073/pnas.73.12.4565. View

4.
Czaja W, Young D, Kawecki M, Brown Jr R . The future prospects of microbial cellulose in biomedical applications. Biomacromolecules. 2007; 8(1):1-12. DOI: 10.1021/bm060620d. View

5.
Kokkinis D, Schaffner M, Studart A . Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun. 2015; 6:8643. PMC: 4639895. DOI: 10.1038/ncomms9643. View