» Articles » PMID: 31521603

Proteogenomic Network Analysis of Context-Specific KRAS Signaling in Mouse-to-Human Cross-Species Translation

Overview
Journal Cell Syst
Publisher Cell Press
Date 2019 Sep 16
PMID 31521603
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

The highest frequencies of KRAS mutations occur in colorectal carcinoma (CRC) and pancreatic ductal adenocarcinoma (PDAC). The ability to target downstream pathways mediating KRAS oncogenicity is limited by an incomplete understanding of the contextual cues modulating the signaling output of activated K-RAS. We performed mass spectrometry on mouse tissues expressing wild-type or mutant Kras to determine how tissue context and genetic background modulate oncogenic signaling. Mutant Kras dramatically altered the proteomes and phosphoproteomes of preneoplastic and neoplastic colons and pancreases in a context-specific manner. We developed an approach to statistically humanize the mouse networks with data from human cancer and identified genes within the humanized CRC and PDAC networks synthetically lethal with mutant KRAS. Our studies demonstrate the context-dependent plasticity of oncogenic signaling, identify non-canonical mediators of KRAS oncogenicity within the KRAS-regulated signaling network, and demonstrate how statistical integration of mouse and human datasets can reveal cross-species therapeutic insights.

Citing Articles

Computational Translation of Mouse Models of Osteoarthritis Predicts Human Disease.

Frost M, Ball B, Pendyala M, Douglas S, Brubaker D, Chan D bioRxiv. 2025; .

PMID: 40060529 PMC: 11888325. DOI: 10.1101/2025.02.23.639777.


TRIP13 protects pancreatic cancer cells against intrinsic and therapy-induced DNA replication stress.

Anand J, Droby G, Joseph S, Patel U, Zhang X, Klomp J bioRxiv. 2025; .

PMID: 39975297 PMC: 11838190. DOI: 10.1101/2025.01.26.634889.


Cross-species transcriptomics translation reveals a role for the unfolded protein response in Mycobacterium tuberculosis infection.

Pullen K, Finethy R, Ko S, Reames C, Sassetti C, Lauffenburger D NPJ Syst Biol Appl. 2025; 11(1):19.

PMID: 39955299 PMC: 11830044. DOI: 10.1038/s41540-024-00487-6.


MPASL: multi-perspective learning knowledge graph attention network for synthetic lethality prediction in human cancer.

Zhang G, Chen Y, Yan C, Wang J, Liang W, Luo J Front Pharmacol. 2024; 15:1398231.

PMID: 38835667 PMC: 11148462. DOI: 10.3389/fphar.2024.1398231.


Kinase activities in pancreatic ductal adenocarcinoma with prognostic and therapeutic avenues.

Valles-Marti A, de Goeij-de Haas R, Henneman A, Piersma S, Pham T, Knol J Mol Oncol. 2024; 18(8):2020-2041.

PMID: 38650175 PMC: 11306541. DOI: 10.1002/1878-0261.13625.


References
1.
Kettenbach A, Gerber S . Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: application to general and phosphotyrosine-specific phosphoproteomics experiments. Anal Chem. 2011; 83(20):7635-44. PMC: 3251014. DOI: 10.1021/ac201894j. View

2.
Elias J, Gygi S . Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods. 2007; 4(3):207-14. DOI: 10.1038/nmeth1019. View

3.
Liu C, Cheng H, Shi S, Cui X, Yang J, Chen L . MicroRNA-34b inhibits pancreatic cancer metastasis through repressing Smad3. Curr Mol Med. 2013; 13(4):467-78. DOI: 10.2174/1566524011313040001. View

4.
Lyons J, Brubaker D, Ghazi P, Baldwin K, Edwards A, Boukhali M . Integrated in vivo multiomics analysis identifies p21-activated kinase signaling as a driver of colitis. Sci Signal. 2018; 11(519). PMC: 6719711. DOI: 10.1126/scisignal.aan3580. View

5.
Elias J, Gygi S . Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol. 2009; 604:55-71. PMC: 2922680. DOI: 10.1007/978-1-60761-444-9_5. View