» Articles » PMID: 31477162

MITRE: Inferring Features from Microbiota Time-series Data Linked to Host Status

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2019 Sep 4
PMID 31477162
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Longitudinal studies are crucial for discovering causal relationships between the microbiome and human disease. We present MITRE, the Microbiome Interpretable Temporal Rule Engine, a supervised machine learning method for microbiome time-series analysis that infers human-interpretable rules linking changes in abundance of clades of microbes over time windows to binary descriptions of host status, such as the presence/absence of disease. We validate MITRE's performance on semi-synthetic data and five real datasets. MITRE performs on par or outperforms conventional difficult-to-interpret machine learning approaches, providing a powerful new tool enabling the discovery of biologically interpretable relationships between microbiome and human host ( https://github.com/gerberlab/mitre/ ).

Citing Articles

Microbial network inference for longitudinal microbiome studies with LUPINE.

Kodikara S, Le Cao K Microbiome. 2025; 13(1):64.

PMID: 40033386 PMC: 11874778. DOI: 10.1186/s40168-025-02041-w.


Techniques for learning and transferring knowledge for microbiome-based classification and prediction: review and assessment.

Han J, Zhang H, Ning K Brief Bioinform. 2025; 26(1.

PMID: 39820436 PMC: 11737891. DOI: 10.1093/bib/bbaf015.


Succession of the multi-site microbiome along pancreatic ductal adenocarcinoma tumorigenesis.

Zhu Y, Liang X, Zhi M, Li L, Zhang G, Chen C Front Immunol. 2024; 15:1487242.

PMID: 39575247 PMC: 11580624. DOI: 10.3389/fimmu.2024.1487242.


Wise Roles and Future Visionary Endeavors of Current Emperor: Advancing Dynamic Methods for Longitudinal Microbiome Meta-Omics Data in Personalized and Precision Medicine.

Oh V, Li R Adv Sci (Weinh). 2024; 11(47):e2400458.

PMID: 39535493 PMC: 11653615. DOI: 10.1002/advs.202400458.


Universal abundance fluctuations across microbial communities, tropical forests, and urban populations.

George A, ODwyer J Proc Natl Acad Sci U S A. 2023; 120(44):e2215832120.

PMID: 37874854 PMC: 10622915. DOI: 10.1073/pnas.2215832120.


References
1.
Rubin D . Fisher, Neyman, and Bayes at FDA. J Biopharm Stat. 2016; 26(6):1020-1024. DOI: 10.1080/10543406.2016.1226333. View

2.
Romero R, Hassan S, Gajer P, Tarca A, Fadrosh D, Bieda J . The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term. Microbiome. 2014; 2:18. PMC: 4066267. DOI: 10.1186/2049-2618-2-18. View

3.
Callahan B, McMurdie P, Rosen M, Han A, Johnson A, Holmes S . DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13(7):581-3. PMC: 4927377. DOI: 10.1038/nmeth.3869. View

4.
Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E . Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009; 75(23):7537-41. PMC: 2786419. DOI: 10.1128/AEM.01541-09. View

5.
Sze M, Schloss P . Looking for a Signal in the Noise: Revisiting Obesity and the Microbiome. mBio. 2016; 7(4). PMC: 4999546. DOI: 10.1128/mBio.01018-16. View